Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Vectors

Arrays are a very common method to store a collection of siniéms.

Arrays work very well for a lot of situations, but they comehvsome very important restrictions.

e their size is specified on construction, and cannot be clthngghout constructing a new
array and copying over the contents

e all array indices must be managed explicitly

e if you want to insert an item at the start of or in the middle w&aray, you need to move one
or more items out of the way to make room

¢ if you remove an item from the start or the middle of an array ywou don’t want to leave a
“hole” in the middle, one or more items needs to be moved ataafill in the hole

This idea of a dynamically resizeable (extensible) array leads naturally to the idea ofrector.

The built-in Java classgsava. uti | . Vect or andj ava. util . ArraylLi st allow the pro-
grammer to build something like an array, but it can change dynamically.

We can add new elements or delete elements anywhere in tteg.vec
What kinds of operations would we like to have on somethinglibhaves like a resizeable array?

We need the functionality of a regular array:

construction

add an item to the end

insert an item in the middle

retrieve value of an element

remove an item

Most of the operators of a vector will assume that the elemarg “packed” — that is:

¢ if we add an element, it will be added to the end by default



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

¢ ifwe add an element in the middle, all elements with highéssupts are moved up to make
room

¢ if we remove an element, all elements with higher subsceptsshifted down to fill in the
space

So we already have some extra functionality that a requtayatoesn’t have.

Since the vector needs to be able to hold anything, its elenaea of typelbj ect (until we look
at generics shortly), hence our initial implementationl wéle casts when items are retrieved.

Here are the key methods we will consider in the implememnadf Vect or in structure package
(which mimics the one ipava. util).

public class Vector {
/1 post: constructs a vector with capacity for 10 el enents
public Vector()

/1 post: adds new elenment to end of possibly extended vector
public void add(Object obj)

/1 post: returns true iff Vector contains the val ue
publ i ¢ bool ean contai ns(Chj ect el enm

/1l pre: 0 <= index && index < size()
/1 post: returns the elenent stored in |ocation index
public Object get(int index)

/1 post: returns index of elenent equal to object, or -1.
/[l Starts at O.
public int indexOr(Cbject elem

/1 pre: 0 <= index <= size()

/1 post: inserts new value in vector with desired index
11 novi ng el enents fromindex to size()-1 to right
public void add(int index, Object obj)

[/l post: returns true iff no elenents in the vector
public bool ean i sEnpty()

/1 post: vector is enpty
public void clear()

/1 post: renove and return first elenent of vector equal to paraneter
/1 Move later elts back to fill space.
public Object renpve(Object el enent)

[l pre: 0 <= where && where < size()

2



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

/1 post: indicated elenment is renoved, size decreases by 1
public Object renove(int where)

/1l pre: 0 <= index && index < size()
/1 post: elenent value is changed to obj
public void set(int index, Object obj)

Vectors are generally used any time size of an array musigehdynamically.

For this initial Vect or implementation, each element stored can by of any type. Ihae a
Vect or calledmyVect and we wish to store thst ri ng value" Hel | 0", we can write

nmyVect . add("Hel | 0");

ThisSt ri ng is an instance ofbj ect , so it matches the expected type for #td method.

However, when we retrieve an an element (engYect . get ( 0) ), the return type i€bj ect .
To be able to treat this value a$sar i ng (or whatever class it is an instance of), we nmypecast
(or, simply,cast) it back to the original data type:

String val = (String)mnmyVect.get(0);

Java will check for us to make sure tBbj ect returned is actually &t r i ng and will throw an
exception (which, for our purposes, means the program vakic).

We can simplify ourSpel | s example by using &ect or to represent the spell list — see the
program inSpel | sVect or. j ava.

See Example:
/ home/ cs501/ exanpl es/ Spel | s/ Spel | sVector. java

Let's consider another example that makes better usé/eta or :

See Example:
/ honme/ cs501/ exanpl es/ Pocket Change/ Pocket Change. j ava

This is a “pocket change” container. It stores the collectibcoins in your pocket by their integer
values in cents, using ¥ect or . You can add and remove coins and get the total value of the
money in the pocket.

This illustrates one of the restrictions Mect or s (and all other general-purpose classes): We
cannot store base types in odect or since base types are nabj ect s.

Luckily, there are builtin classes to “wrap them up"@g ect s:

I nteger seven = new I nteger(7);



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Others ardBool ean, Char act er, Doubl e, Fl oat, Long, andNunber .

We can retrieve thent equivalent of anh nt eger by callingi nt Val ue.
seven. i nt Val ue();

You can find the entire list of classes and associated metihdte| ava. | ang package docu-
mentation.

Starting with JDK 1.5, the Java system will do the conversiogtween base types and their “wrap-
per” classes automatically as needed.

The term isautoboxing.

See Example:
/ home/ cs501/ exanpl es/ Pocket Change/ Pocket ChangeAut obox. j ava

This addresses a repeated complaint among Java prograihaigisey were always packaging up
values and using thient Val ue() and similar functions.

Vector Implementation

How can we implement &ect or ? We can’t look at or modify the Sun implementation in
j ava. uti |, which is why we have the structure package.

Structure was developed at Williams College to go with out & is now used by lots of people
who use this text.

We will look at the implementation dfect or in structure.

See Structure Source:
/ home/ ¢s501/ src/ structure/ Vector.java.java

A Vect or uses an array for the internal storage of elements it cantdircould also use lists or
whatever else it would like, but an array is a good choice.

The array-baseWect or implementation has two essential fields:

protected Object elenmentDatal];
protected int el enentCount;

the array and the number of elements of array currently in use

Note that there is an important distinction between theaitiee array and the number of elements
in use by the/ect or .

We don’t need to store the size of the array, since Java acage equipped with that information
inthe. | engt h field.



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

When the Vector is about to exceed capacity, we copy its elesmeto a larger array. We need an
efficient strategy for this, which we will discuss shortly.

Some other items of note in the implementation:

e There are several constructors, but we will focus on justahr
public Vector();

The parameterless constructor simply calls the singlenpeter constructor with a constant
value of 10, so we will start with the single parameter cangbr.

public Vector(int initial Capacity);

This constructor creates an empfyct or with an array allocated withni ti al Capacity
entries.

public Vector(int initial Capacity, int capacitylncr);

This does the same, but also sets the instance vacalgaci t yl ncr enent to the value
specified. We will look at the use of this value soon.

e There are twadd methods, one that adds an element at the end dfdle¢ or and another
that adds an element at a specific position.

— both callensur eCapaci t y to make sure there is space for the new element (more
soon)

— the version that inserts at a location needs to move up ameeits beyond the insertion
point to make room (up te copy operations for an-elementVect or!)

e Ther enove method returns the item at a given index and then shifts dowrcontents
beyond that index to avoid a “hole” in the array. Again, wednap ton copy operations for
ann-elementvect or .

e Theget andset methods are very straightforward. These retrieve or mdtigyentry at a
given index in oulVect or .

e A variety of other useful methods are less interesting (enm@ntation-wise)cont ai ns,
i ndexOF ,i senpty, cl ear, andsi ze.

Managing the Internal Array Size

What if we run out of space in the array when adding new elerfients



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Arrays cannot be resized in place. In either case, we neegb&teca new, larger array then copy
the contents from the old array to the new one.

This is an expensive operation:copy operations for an-elementvVect or .
But how much larger should we make the array?

Options:

1. Increase the array size by 1 (or some other constant value)

2. Double (or triple, ...) the array size

Consider the first option, starting with an emptgct or and an initial capacity of 1.
Over the course of add operations, we will peform aboaf— copy operations:

n—1

O+14+2+3+4+...+n=nx 5

With the second option (assumings power of 2 for simplicity), we have to copy
O+1+2+4+8+...+%=n—1

elements.
Copying about: elements is much less painful than copyﬁﬁg

Of course, no copies would need to be made if we just allocggade fom elements at beginning
(a good idea, if you know ahead of time, but if you did, you might just be using an arrpy.

OurVect or s let the user decide which strategy to use.

If the Vect or is constructed with @apaci t yl ncr enent of O (either by using a constructor
that does not specify one, or by passing 0 to that constrpet@meter), th&ect or will double
its array’s length each time it needs to expand.

If a non-zerocapaci t yl ncr enent is specified, th&ect or will be expanded by that (fixed)
amount each time it needs to grow.

Soitis up to the user to decide which strategy would be monefigal, given the expected usage
patterns of th&/ect or .



