
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Vectors

Arrays are a very common method to store a collection of similar items.

Arrays work very well for a lot of situations, but they come with some very important restrictions.

• their size is specified on construction, and cannot be changed without constructing a new
array and copying over the contents

• all array indices must be managed explicitly

• if you want to insert an item at the start of or in the middle of an array, you need to move one
or more items out of the way to make room

• if you remove an item from the start or the middle of an array and you don’t want to leave a
“hole” in the middle, one or more items needs to be moved around to fill in the hole

This idea of a dynamically resizeable (or,extensible) array leads naturally to the idea of avector.

The built-in Java classesjava.util.Vector andjava.util.ArrayList allow the pro-
grammer to build something like an array, but it can change size dynamically.

We can add new elements or delete elements anywhere in the vector.

What kinds of operations would we like to have on something that behaves like a resizeable array?

We need the functionality of a regular array:

• construction

• add an item to the end

• insert an item in the middle

• retrieve value of an element

• remove an item

Most of the operators of a vector will assume that the elements are “packed” – that is:

• if we add an element, it will be added to the end by default



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

• if we add an element in the middle, all elements with higher subscripts are moved up to make
room

• if we remove an element, all elements with higher subscriptsare shifted down to fill in the
space

So we already have some extra functionality that a regular array doesn’t have.

Since the vector needs to be able to hold anything, its elements are of typeObject (until we look
at generics shortly), hence our initial implementation will use casts when items are retrieved.

Here are the key methods we will consider in the implementation ofVector in structure package
(which mimics the one injava.util).

public class Vector {
// post: constructs a vector with capacity for 10 elements
public Vector()

// post: adds new element to end of possibly extended vector
public void add(Object obj)

// post: returns true iff Vector contains the value
public boolean contains(Object elem)

// pre: 0 <= index && index < size()
// post: returns the element stored in location index
public Object get(int index)

// post: returns index of element equal to object, or -1.
// Starts at 0.
public int indexOf(Object elem)

// pre: 0 <= index <= size()
// post: inserts new value in vector with desired index
// moving elements from index to size()-1 to right
public void add(int index, Object obj)

// post: returns true iff no elements in the vector
public boolean isEmpty()

// post: vector is empty
public void clear()

// post: remove and return first element of vector equal to parameter
// Move later elts back to fill space.
public Object remove(Object element)

// pre: 0 <= where && where < size()

2



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

// post: indicated element is removed, size decreases by 1
public Object remove(int where)

// pre: 0 <= index && index < size()
// post: element value is changed to obj
public void set(int index, Object obj)

}

Vectors are generally used any time size of an array must change dynamically.

For this initialVector implementation, each element stored can by of any type. If wehave a
Vector calledmyVect and we wish to store theString value"Hello", we can write

myVect.add("Hello");

ThisString is an instance ofObject, so it matches the expected type for theadd method.

However, when we retrieve an an element (e.g.,myVect.get(0)), the return type isObject.
To be able to treat this value as aString (or whatever class it is an instance of), we musttypecast
(or, simply,cast) it back to the original data type:

String val = (String)myVect.get(0);

Java will check for us to make sure theObject returned is actually aString and will throw an
exception (which, for our purposes, means the program will crash).

We can simplify ourSpells example by using aVector to represent the spell list – see the
program inSpellsVector.java.

See Example:
/home/cs501/examples/Spells/SpellsVector.java

Let’s consider another example that makes better use of aVector:

See Example:
/home/cs501/examples/PocketChange/PocketChange.java

This is a “pocket change” container. It stores the collection of coins in your pocket by their integer
values in cents, using aVector. You can add and remove coins and get the total value of the
money in the pocket.

This illustrates one of the restrictions onVectors (and all other general-purpose classes): We
cannot store base types in ourVector since base types are notObjects.

Luckily, there are builtin classes to “wrap them up” asObjects:

Integer seven = new Integer(7);

3



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Others areBoolean, Character, Double, Float, Long, andNumber.

We can retrieve theint equivalent of anInteger by callingintValue.

seven.intValue();

You can find the entire list of classes and associated methodsin thejava.lang package docu-
mentation.

Starting with JDK 1.5, the Java system will do the conversions between base types and their “wrap-
per” classes automatically as needed.

The term isautoboxing.

See Example:
/home/cs501/examples/PocketChange/PocketChangeAutobox.java

This addresses a repeated complaint among Java programmersthat they were always packaging up
values and using theintValue() and similar functions.

Vector Implementation
How can we implement aVector? We can’t look at or modify the Sun implementation in
java.util, which is why we have the structure package.

Structure was developed at Williams College to go with our text and is now used by lots of people
who use this text.

We will look at the implementation ofVector in structure.

See Structure Source:
/home/cs501/src/structure/Vector.java.java

A Vector uses an array for the internal storage of elements it contains. It could also use lists or
whatever else it would like, but an array is a good choice.

The array-basedVector implementation has two essential fields:

protected Object elementData[];
protected int elementCount;

the array and the number of elements of array currently in use.

Note that there is an important distinction between the sizeof the array and the number of elements
in use by theVector.

We don’t need to store the size of the array, since Java arrayscome equipped with that information
in the.length field.

4



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

When the Vector is about to exceed capacity, we copy its elements into a larger array. We need an
efficient strategy for this, which we will discuss shortly.

Some other items of note in the implementation:

• There are several constructors, but we will focus on just three:

public Vector();

The parameterless constructor simply calls the single parameter constructor with a constant
value of 10, so we will start with the single parameter constructor.

public Vector(int initialCapacity);

This constructor creates an emptyVectorwith an array allocated withinitialCapacity
entries.

public Vector(int initialCapacity, int capacityIncr);

This does the same, but also sets the instance variablecapacityIncrement to the value
specified. We will look at the use of this value soon.

• There are twoadd methods, one that adds an element at the end of theVector and another
that adds an element at a specific position.

– both callensureCapacity to make sure there is space for the new element (more
soon)

– the version that inserts at a location needs to move up any elements beyond the insertion
point to make room (up ton copy operations for ann-elementVector!)

• Theremove method returns the item at a given index and then shifts down the contents
beyond that index to avoid a “hole” in the array. Again, we have up ton copy operations for
ann-elementVector.

• Theget andset methods are very straightforward. These retrieve or modifythe entry at a
given index in ourVector.

• A variety of other useful methods are less interesting (implementation-wise):contains,
indexOf, isEmpty, clear, andsize.

Managing the Internal Array Size

What if we run out of space in the array when adding new elements?

5



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Arrays cannot be resized in place. In either case, we need to create a new, larger array then copy
the contents from the old array to the new one.

This is an expensive operation:n copy operations for ann-elementVector.

But how much larger should we make the array?

Options:

1. Increase the array size by 1 (or some other constant value)

2. Double (or triple, ...) the array size

Consider the first option, starting with an emptyVector and an initial capacity of 1.

Over the course ofn add operations, we will peform aboutn
2

2
copy operations:

0 + 1 + 2 + 3 + 4 + ...+ n = n ∗

n− 1

2

With the second option (assumingn is power of 2 for simplicity), we have to copy

0 + 1 + 2 + 4 + 8 + ...+
n

2
= n− 1

elements.

Copying aboutn elements is much less painful than copyingn
2

2
.

Of course, no copies would need to be made if we just allocatedspace forn elements at beginning
(a good idea, if you known ahead of time, but if you did, you might just be using an array...).

OurVectors let the user decide which strategy to use.

If the Vector is constructed with acapacityIncrement of 0 (either by using a constructor
that does not specify one, or by passing 0 to that constructorparameter), theVector will double
its array’s length each time it needs to expand.

If a non-zerocapacityIncrement is specified, theVector will be expanded by that (fixed)
amount each time it needs to grow.

So it is up to the user to decide which strategy would be more beneficial, given the expected usage
patterns of theVector.

6


