Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2013

Topic Notes: Ordered Structures

We have considered two special-purpose data types, stackgueues, that are essentially
stricted versions of the more general structures we considereceearli

While we implemented our stacks and queues using arrays adrseand linked lists, the in-
terfaces to these linear structures limited access to teenia representation, and allowed us to
choose an appropriate way to orient the data within the stres to make the operations in the
restricted interface as efficient as possible.

Now, we consider structures that have another restrictiacepl on them: that their contents are
maintained in some order.

Theseordered structures allow us to search among their contents efficiently, or tocess the
contents in a particular order.

These can be implemented using the structures we know sphuetgain we will want to restrict
the interface so as to guarantee that the ordered nature efrtictures is not violated.

Ordering objects implies that we have a mechanism for commganem.

Recall that when we discussed sorting algorithms, we satdotia approach to allow our code
to be more generally applicable is to require that the elésnehthe arrays had to implement
Conpar abl e. Conpar abl e is a Java interface that requires a method:

public int conpareTo(T item;

In one assignment, we extended this idea to the more geGenglar at or concept, where we
could compare objects of any type and according to any @&jté&y supplying an appropriate
conpar e method in &Conpar at or that could compare two given objects.

Let’'s consider how thé&onpar abl e interface andConpar at or objects might be of use in
defining objects that can be placed into an ordered strudtugarticular, let’'s begin by consider-
ing aComparable Association.

Itis an extension of thAssoci at i on class from way back that also impleme@snpar abl e,
therefore adding aonpar eTo method. Recall thafAssoci at i ons are key/value pairs. For a
Conpar abl eAssoci at i on, we require that the key beonpar abl e.

See Structure Source:
/ home/ ¢s501/ src/ struct ureb/ Conpar abl eAssoci ati on. j ava

TheseConpar abl eAssoci at i ons may be compared and placed in an ordered structure.



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We will implement two ordered structures, one based deat or and the other on a linked list.
In structure, each of these implements an interface c@lleter edSt r uct ur e.

See Structure Source:
/ home/ ¢s501/ src/ structureb/ OrderedStructure. java

It's an empty interface! What good is this? All it does it defireetype. But that means we can
use that type in places where we want to require one of oureddsructures, but do not want to
commit to a particular implementation (as when we wanted st but did not want to commit to
a specific one).

But since it does extend & uct ur e interface, it requires our basic set of operations.

See Structure Sour ce:
/ home/ cs501/ src/ structureb/ Structure.java

But in this case, we (as implementers) will enforce the retstn on implementations that the
contents will be stored in order.

Ordered Vectors
We'll first consider arOr der edVect or of Conpar abl e objects.

As we did with the linear structures, we don’t extend the ulyileg data type, but ratheancapsu-
lateit.

So use aregulavect or as the underlying representation, but regtrict the interface to enforce
that our structure remain ordered.

See Structure Source:
/ home/ ¢s501/ src/ structure5/ OrderedVector. java

What are the complexities of the methods here?

e cont ai ns can make use of a binary search! Well, that was the whole peadn't it? But
this is good! We now have a structure with @flog n) cont ai ns method.

e add now requires a search for the proper position at which to ade. use ar©(logn)
binary search. Plus there is a worst-c&Xe) cost to move everything up beyond the add
position.

e renpve can use a binary search as well, agaifiog n) to find the position of the item to
be removed, followed by a worst-ca®én) cost to shift down the contents of tMect or .

An important question here is why did we not extévielct or instead of having one protected
inside the class? Our answer is that the public interfacédd/ect or class is not restrictive
enough! Since th€r der edVect or would alsobe a Vect or with all of its public methods,
users could modify the structure with general-purpdset or operators and break the ordering!



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Again, we need toestrict the functionality to ensure that our structure functionsectly and that
it can be made to perform its public functionality more eéidiy.

Ordered Lists

Which of our list implementations make sense for our listdod® der edSt r uct ur e?

Consider the operations allowed. We need only search frorhagbgmning and add/remove values
at arbitrary positions. The doubly-linked and circulatdiare no better at these than a singly-linked
list, so it makes sense to go with the simplest one that works.

We could implement this with a protect&il ngl yLi nkedLi st , just as we did with the pro-
tectedVect or inside of ourOr der edVect or .

But think about how we’d have to do fadd. We would need to create an iterator over the list to
compare the object we’re adding with each object in theTisen we’d know where to add it. But
adding it would require a new search all the way from the ba@ggl That's inefficient.

So we want to break open ti& ngl yLi nkedLi st and use some of its internals without using
the whole thing. Essentially ol der edLi st will implement its own list by using the same

Node structure that is used & ngl yLi nkedLi st . But we’ll manage the details differently in

Or der edLi st . Fortunately, we have a very restrictive interface, sodlse not many methods

to worry about.

So we’ll have a counted singly-linked list that keeps iteetfered.

See Structure Source:
/ home/ ¢s501/ src/ structureb/ OrderedLi st. java

Unfortunately, our important operations are giilln). Our linked list does not allow direct access
to arbitrary elements, forcing us to settle for a linear seavhen finding the correct position for
an object being added or removed or searched.

Adding an optional Conpar art or

An additional feature of this implementation is that it alkouse of &Conpar at or for alternate
orderings of our data. In fact, it does in a way that allow® itMork without modification if you
wish to orderConpar abl es bt their “natural” ordering, but will allowing alternatederings
using aConpar at or .

The changes needed to support this:

1. Add an instance variable to store the comparator. Theadslysyntax for the type parameter
here means that we can specifanpar at or for anything thak is — any of the classes it
extends or interfaces it implements. So long as it can coenplajects of typé.

2. Add a new constructor that takes an appropi@tepar at or as its parameter.

3. Modify the default constructor to create and usdled ur al Conpar at or — a simple

3



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Conpar at or that just uses the requiretbnpar eTo method of ourConpar abl e ob-
jects.

4. Change theonpar eTo calls toconpar e calls.

Our structure is actually a bit overrestrictive. We reqtia the elements we add exte@alrpar abl e,
even though we’ll only use theeonpar eTo method when using thidat ur al Conpar at or .



