Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2013

Topic Notes: Linked Structures

So far, all of our structures for holding collections of itetrave been very simple. We've used only
arrays and/ect or s. These have some pretty significant limitatioviect or s are resizeable, but
it is an expensive operation. It's also expensive to add omroke objects from the start or the
middle of the vector. We can do better.

We will begin our study of more advanced data structures st These are structures whose
elements are in Anear order.

Singly Linked Lists

These came up just briefly last time as a motivation for itgeatMost of you have seen the idea
of alinked list:

hea@w-Hw-Hw-Hnﬂ

List Objects))

This structure is made up of a pointer to the first list elenagrt a collection of list elements.

The structure that makes up a list element has two fields:

1. val ue: theQbj ect which is stored at that list element’s position in the list.

2. next : a pointer to the next list element, oul | for the last element.
So the data for a very basic linked structure could look Iike:t

cl ass Sinpl eLi st Node<E> {

protected E val ue;
prot ected SinpleLi st Node<E> next;

}

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public class SinpleLinkedList<E> {

prot ected SinpleLi st Node<E> head;
}

As we saw with thé/ect or | t er at or, publ i ¢ is not specified in the class definition, since
we aren't allowing regular users to create one of these, @8iynpl eLi nkedLi st <E>.

So if we want to create one of these, it's very easy. We jussttaat aSi npl eLi nkedLi st <E>
and set ithead tonul | .

public SinpleLinkedList() {
head = nul | ;

}

How about adding an element? This involves two steps:

1. construct a new list node for the element

2. insert the new list node into the list

Let’s think about what this will mean. We add our first elemesaty a 1, we want this list to go
from just an emptyhead reference, to a node pointed at bgad which has the 1 as itgal ue
andnul | as itsnext .

Now, we add another element, say 2. We have two choices. Wadthat the beginning or at the
end.

Now, we add another element, 3. Now we have three choices.nBieg, middle, or end. In
general, we can add at position 0, 1, or 2.

Construction of the new list node is easy, once we know whagttidsnext pointer to. Here’s a
constructor:

public SinplelListNode(E val ue, SinplelListNode<E> next) {
this.value = val ue;
thi s. next = next;

We'll see that we will need to be able to set and retrieve thaevand the next pointer. We'll call
the accessorgal ue() andnext (), and the mutatorset Val ue() andset Next ().

We would like to allow additions to any place in our list, sowi develop a generadd method
that deals with all three of the cases described above.

We'll need to provide ouadd method with an index and an object:

2

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public void add(int pos, E obj) {...}

Adding to an empty list is easy. We know it's emptyhiéad is nul | . If so, thenpos must be 0,
and we just add the node:

/] are we adding to an enpty list?

if (head == null) {
Assert. pre(pos==0, "Attenpt to add at position " + pos + " in enpty |i:¢
head = new Si npl eLi st Node<E>(obj, null);
return;

So that was an easy case. How about adding at position 0?sTlikely a common operation. It's
also very simple. We just want to drop in a new list node, whoset is set to the oldhead, and
assignhead to the new list node.

/] are we adding at the front of a non-enpty list?

if (pos==0) {
head = new Si npl eLi st Node<E>(obj, head);
return;

It gets more complicated if we want to insert in the middle tiha end pos != 0). We need to
search for the item after which we want to insert, then doriserition.

/1 we are adding sonmewhere else, find entry after which we wll
/1 insert our item

int i = 0;

Si mpl eLi st Node<E> fi nger = head;

while (i < pos-1) {

| ++;
finger = finger.next();
Assert.pre(finger !'= null, "Attenpt to add at position " + pos + " in

}

/1l finger points at the node after which we want to add

/1l so create the new object with finger’'s next as its next
/1 and set finger’'s next to the new node.

/1 note that this also works for the case when we are addi ng
// to the end

finger. set Next (new Si npl eLi st Node<E>(obj, finger.next()));

OK, now that we can build up our lists, let's consider a fewessors. Firstget . Again, we'll
allow users t@et an element at any position.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public E get(int pos) {

Si npl eLi st Node<E> finger = head;
int i = 0;

Assert.pre(head !'= null, "Attenpt to get froman enpty list");

while (i < pos) {

i ++;
finger = finger.next();
Assert.pre(finger !'= null, "Attenpt to get elenent " + pos + " froma "

}

return finger.val ue();

We can write aset method almost identical to this, except that instead ofrnétig the value at
the desired position, we just set it and return the old value.

So now aboutont ai ns? We need to search through looking for the element until wetifior
find the end of the list.

The basic structure is the samegat . We have a “finger” tracking our progress through the list.

public bool ean contains(E obj) {

/1 easy when the list is enpty
if (head == null) return fal se;

/! otherwi se | ook for it

Si mpl eLi st Node<E> fi nger = head;

while (finger '=null) {
if (finger.value().equals(obj)) return true;
finger = finger.next();

}

return fal se;

Let's do an easy onesi ze() .

public int size() {
Si npl eLi st Node<E> finger = head,
int count = O;

/1 count up the nunber of list nodes until we get a null next
while (finger '=null) {

count ++;

finger = finger.next();

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

}

return count;

That was easy, but quite inefficient. More on that later.

Now, let’s consider a harder oneenove() . We can remove items by value or by index. We’'ll
just implement by index.

There are a number of cases to consider:

=

remove the only item from a list
. remove the first item in a list from a list with at least twermkents

remove the last item in a list from a list with at least twemeénts

B owoN

remove an item from the middle of a list from a list with edetwo elements
public E rempove(int pos) {
First, we make sure we’re not removing from an empty list witbkAsser t .
Assert.pre(head !'= null, "Attenpt to renove froman enpty list");
Next, we can take care of the first item case.

/! check for renpval of the first itemin the |ist
/1 this work for the one-elenment case, as head gets set to nul
if (pos == 0) {

E retval = head. val ue();

head = head. next ();

return retval;

In other cases, we need to find the item we want to remove andtatyme pointers.

So we need to have our “finger” on the elembefore the one we want to remove, since that'’s the
one whosaext pointer will need to be adjusted.

/1 renove an itemat a non-first position

Si npl eLi st Node<E> finger = head,;

int count = O;

/1l find the itembefore the one we want to renove

5

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

while (count < pos-1) {

count ++;
finger = finger.next();
Assert.pre(finger !'= null, "Attenpt to renpve el enent at index " + pos

}

/1l finger is pointing to item pos-1

/1 make sure there is sonething at pos

Assert.pre(finger.next() != null, "Attenpt to renove elenent at index " +
E retval = finger.next().value();

finger.setNext(finger.next().next());

return retval;
Removing everything is very simple.

public void clear() {
head = nul |;

}

What about all those list nodes? We still have referencesemithNot to worry, Java’s garbage
collector will clean them up.

However, not all languages are garbage collected like Jav@.or C++, you need to be careful to
free (in C) ordel et e (in C++) all of the objects you no longer need.

Let’'s consider the complexity of our operations.

e add(0) : ©(1)

e add(i) : ©(i)

e add(n) : ©(n)

e get/set(0) : O(1)

e get/set (i) :O(:)

e get/set(n-1) : ©O(n)

e renove(0) : ©(1)

e renmove(i) : (i)

e renove(n-1) : O(n)

e get all values in sequenced(n?) (hey, we need aht er at or !)

e size() : ©(n) (hey, we can do better if we remember this)

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

How do these compare to similar operationsvatt or s?

adding at the front is easier.

e adding at the end is harder.

e adding in the middle, well it depends where.

e the costis consistent, though, since there is no reallmeand copying to grow the structure.
e removing at the front is easier.

e removing at the end is harder.

e removing in the middle is probably similar.

e getting/setting an arbitrary value is harder.
What about space usage?

e there are no empty slots like we havedact or s

e but there’s an extra reference for each object stored! 3hHt:) space overhead.

We still have a couple of problems with this implementatibattwe’d like to address. First, the
O(n?) traversal is no good — we need bner at or .

Remember, an iterator must remember some state about tleetmoll it's visiting. With our
Vect or iterator example, we just needed to remember the index afiekeitem to be returned.
Remembering the index doesn’t help us here. We need to remeamimething about the internals
of the list to make this work. The most useful thing to rementisze is the list node — that “finger”
we used in most of the methods we've looked at.

We'll implement our iterator as an extension of the struetpackage’Abst ract |t er at or
abstract class:

class Sinplelistlterator<E> extends Abstractlterator<kE> {

Again, it's not a public class, since no one except 8unpl eLi nkedLi st is allowed to con-
struct one.

We need to have data to support the regular iterator opespus be able to reset the iterator, so
we need to have our iterator remember the head of the listrentfinger”:

protected SinpleLi st Node<E> current;
protected SinpleListNode<E> head;

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

and to construct one, we need to have the head of the listgpasse

public SinpleListlterator(SinplelListNode<E> t) {
head = t;
reset();

}

To reset, we just set the currenttiead.

public void reset() {
current = head;

}

So thecur r ent pointer always points to the next node whose valuerwaget been returned.
From this, we can construct the remaining methods:

publ i ¢ bool ean hasNext () {
return current !'= null

}

public E next() {
E temp = current.val ue();
current = current.next();
return tenp;

}

public E get() {
return current.val ue();

}
And in theSi npl eLi nkedLi st class, we have a method to create one:

public Iterator<BE> iterator() {
return new Sinpl eListlterator<E>(head);

}

We also make ou®i npl eLi nkedLi st implementl t er abl e so we can use it in “for each”
loops.

This entire implementation:

See Example:
/ home/ cs501/ exanpl es/ Si npl eLi nkedLi st

We can improve the efficiency of tred ze() method by maintaining an extra instance variable
that tracks how many elements are in the list.

Which methods would need to change to do this?

8

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

count needs to be initialized in the constructor

increment count in add

decrement count in remove

reset count to O in clear

simplify size to return count

This seems worthwhile. We've added some complexity to outhods but only added a single
i nt to the size of the structure. The biggest disadvantage afga@ddcount is that we could forget
to update it in some circumstance, leading to an incongistascture. For example, there are three
different cases in thadd method, and we need to make sure we increment the count in each

This is exactly what we find in the structure packadg@#'sigl yLi nkedLi st implementation.

See Structure Sour ce:
/ honme/ ¢cs501/ src/ structure5/ Si ngl yLi nkedLi st . j ava

Maintainingat ai | pointer

There’s another enhancement we can consider. Adding thogse end of the list seems like
something that will happen pretty often, and it's@f) operation in our implementation.

Well, the only reason it'®(n) is because we need to follow all the links from the head to fired t
last element so we can add it.

We can fix that by maintaining another reference to the taiheflist.

e Anempty listhafhiead=t ai | =nul | , alistw/one element hdsad =t ai | =areference
to that element, while in all other caségad !=t ai | .

e Then, amadd operation specifying the end becomes straightforwardaid.

e It also would let ugyet orset the last element i®(1) time.

e Butar enove from the end is stilB(n). We need ai | ’s predecessor to be able to remove
the last item, and we have to search all the way from the bewirto find it.

Still, this seems like a worthwhile enhancement. We addqustextra reference and that's that.

It adds coding complexity tadd andr enove methods since we must worry about resetting the
tai | field. Even adding at the beginning may have to résetl field (why?).

Circular Lists

Can we simplify things further without changing any big-O aelbr by noticing that tail node of
list has anext field that is always “wasted” — it is always equalrtal | ?

9

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

If we use that field to point to the beginning of the list, themaon’t need a separatead field?
This is acircularly linked list. Thehead is always found asai | . next () !
This is theCGi r cul ar Li st in the structure package.

See Structure Sour ce:

/ home/ ¢cs501/ src/ structure5/ Circul arLi st.java
e With this implementationadd at the end is nov®(1).
e But now it takes one extra dereference (i.e., following arexfee) to get thead.
e Onlycont ai ns, renove, andr enovelast are stillO(n).

e cont ai ns andr enove involve searches and seem likely always todye:) (unless we
attempt to keep list in order and do binary search - which taswn problems - we’ll
consider this later..).

e However, why can't we makeenovelLast ©(1)? The problem is that we need to know
the predecessor in order to delete an element from the list.

Doubly-linked lists

In our implementations so far, references only go from tohatfto the back of the list. Why not
put them in the other direction instead? Well we could, batth would be harder to delete from
the front.

So... we can put references in both directions.

This is a more significant change: our list nodes now need amgh. We need an extra field to
hold a reference to the previous node, but the space overagwinsO(n).

cl ass Doubl yLi nkedLi st El enent <E> {

protected E val ue;
prot ected Doubl yLi nkedLi st El enent <E> next ;
prot ect ed Doubl yLi nkedLi st El enent <E> prev;

}

With this defined, it is now easy to define a doubly-linked liEhis time we’ll keep track of both
the first fead) and last(ai |) elements of the list so we can getttai | quickly.

This is theDoubl yLi nkedLi st inthe structure package.

See Structure Source:
/ home/ ¢s501/ src/ struct ure5/ Doubl yLi nkedLi st . j ava

10

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Note that the constructor f@oubl yLi nkedLi st El enent s automatically sets back pointers
to maintain consistency.

renovelast is now©(1), but the tradeoff is that now all addition and removal operest must
set one extra pointer in the list node. We must also worry eabwintaining both thénead and

tai |l of the list, with complicated cases arising when adding amaving from a 0-, 1-, or
2-element list.

Design of List Classes

We now have a number of ways to implement linked list striegurTo some extent, these are
all interchangeable functionally. We can add, retrievajaee, search, though there are time and
space tradeoffs involved.

We would like to be able to use them interchangeably. Thishatwava interfaces and abstract
classes allow us to do.

We start by defining an interface that we’ll use for a varidtingplementations of lists:

e Accessorsi sEnpty(),size(),get(),contains(),iterator()

e Mutators:add(),set(),renove(),clear()

See Structure Source:
/[home/ cs501/ src/ structureb5/List.|ava

First notice that it extendSt r uct ur e. This means d.i st requires the basic operations we
expect on any of our structures.

See Structure Sour ce:
/ home/ cs501/ src/ structureb/ Structure.java

The text has a simple example of reading in successive lmoes & text and adding each line to
the end of a list if it doesn’t duplicate an element alreadghalist. This is easily handled with the
operations provided.

AbstractLists

ThelLi st interface requires a lot of methods, many of which will be shene in all of the imple-
mentations. So the structure package defines an abstrastfotahis:

See Structure Source:
/ home/ cs501/ src/ structureb/ AbstractList.java

Then each of our actual list implementatiast ends Abst r act Li st, and needs only to fill
in the methods not already provided.

Vect or asali st

11

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Given this, we can imagine another implementation ofithet interface.

Vect or already provides all of the methods required bylthst interface. In the structure pack-
ageVect or ext ends Abstract Li st. Inthe Java API, this explains the naier ayLi st .

So we can use &ect or as a “list” as well. Some of the operations are more expensie
anywhere we want ki st , we can use &ect or .

This leaves 4 classes that implement thest interface (all by extendingbst r act Li st) in
the structure package:

e Si ngl yLi nkedLi st

e Circul arlLi st

e Doubl yLi nkedLi st

e Vector
You should understand how each of these structures worky kiowy to use them correctly, should

be able to develop the internals of any of the methods in tbhlesses, and should understand the
time and space complexities of the implementations.

12

