
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Linked Structures

So far, all of our structures for holding collections of items have been very simple. We’ve used only
arrays andVectors. These have some pretty significant limitations.Vectors are resizeable, but
it is an expensive operation. It’s also expensive to add or remove objects from the start or the
middle of the vector. We can do better.

We will begin our study of more advanced data structures withlists. These are structures whose
elements are in alinear order.

Singly Linked Lists
These came up just briefly last time as a motivation for iterators. Most of you have seen the idea
of a linked list:

List Objects .
.
.

.

.

.

.

.

.

.

.

.

head

This structure is made up of a pointer to the first list elementand a collection of list elements.

The structure that makes up a list element has two fields:

1. value: theObject which is stored at that list element’s position in the list.

2. next: a pointer to the next list element, ornull for the last element.

So the data for a very basic linked structure could look like this:

class SimpleListNode<E> {

protected E value;
protected SimpleListNode<E> next;

}



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public class SimpleLinkedList<E> {

protected SimpleListNode<E> head;
}

As we saw with theVectorIterator, public is not specified in the class definition, since
we aren’t allowing regular users to create one of these, onlyaSimpleLinkedList<E>.

So if we want to create one of these, it’s very easy. We just construct aSimpleLinkedList<E>
and set itshead to null.

public SimpleLinkedList() {
head = null;

}

How about adding an element? This involves two steps:

1. construct a new list node for the element

2. insert the new list node into the list

Let’s think about what this will mean. We add our first element, say a 1, we want this list to go
from just an emptyhead reference, to a node pointed at byhead which has the 1 as itsvalue
andnull as itsnext.

Now, we add another element, say 2. We have two choices. We canadd at the beginning or at the
end.

Now, we add another element, 3. Now we have three choices. Beginning, middle, or end. In
general, we can add at position 0, 1, or 2.

Construction of the new list node is easy, once we know what to set itsnext pointer to. Here’s a
constructor:

public SimpleListNode(E value, SimpleListNode<E> next) {
this.value = value;
this.next = next;

}

We’ll see that we will need to be able to set and retrieve the value and the next pointer. We’ll call
the accessorsvalue() andnext(), and the mutatorssetValue() andsetNext().

We would like to allow additions to any place in our list, so wewill develop a generaladd method
that deals with all three of the cases described above.

We’ll need to provide ouradd method with an index and an object:

2



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public void add(int pos, E obj) {...}

Adding to an empty list is easy. We know it’s empty ifhead is null. If so, thenpos must be 0,
and we just add the node:

// are we adding to an empty list?
if (head == null) {

Assert.pre(pos==0, "Attempt to add at position " + pos + " in empty list");
head = new SimpleListNode<E>(obj, null);
return;

}

So that was an easy case. How about adding at position 0? This is likely a common operation. It’s
also very simple. We just want to drop in a new list node, whosenext is set to the oldhead, and
assignhead to the new list node.

// are we adding at the front of a non-empty list?
if (pos==0) {

head = new SimpleListNode<E>(obj, head);
return;

}

It gets more complicated if we want to insert in the middle or at the end (pos != 0). We need to
search for the item after which we want to insert, then do the insertion.

// we are adding somewhere else, find entry after which we will
// insert our item
int i = 0;
SimpleListNode<E> finger = head;
while (i < pos-1) {

i++;
finger = finger.next();
Assert.pre(finger != null, "Attempt to add at position " + pos + " in list

}
// finger points at the node after which we want to add
// so create the new object with finger’s next as its next
// and set finger’s next to the new node.
// note that this also works for the case when we are adding
// to the end
finger.setNext(new SimpleListNode<E>(obj, finger.next()));

OK, now that we can build up our lists, let’s consider a few accessors. First,get. Again, we’ll
allow users toget an element at any position.

3



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public E get(int pos) {

SimpleListNode<E> finger = head;
int i = 0;

Assert.pre(head != null, "Attempt to get from an empty list");

while (i < pos) {
i++;
finger = finger.next();
Assert.pre(finger != null, "Attempt to get element " + pos + " from a "

}
return finger.value();

}

We can write aset method almost identical to this, except that instead of returning the value at
the desired position, we just set it and return the old value.

So now aboutcontains? We need to search through looking for the element until we find it or
find the end of the list.

The basic structure is the same asget. We have a “finger” tracking our progress through the list.

public boolean contains(E obj) {

// easy when the list is empty
if (head == null) return false;

// otherwise look for it
SimpleListNode<E> finger = head;
while (finger != null) {

if (finger.value().equals(obj)) return true;
finger = finger.next();

}
return false;

}

Let’s do an easy one:size().

public int size() {
SimpleListNode<E> finger = head;
int count = 0;

// count up the number of list nodes until we get a null next
while (finger != null) {

count++;
finger = finger.next();

4



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

}

return count;
}

That was easy, but quite inefficient. More on that later.

Now, let’s consider a harder one:remove(). We can remove items by value or by index. We’ll
just implement by index.

There are a number of cases to consider:

1. remove the only item from a list

2. remove the first item in a list from a list with at least two elements

3. remove the last item in a list from a list with at least two elements

4. remove an item from the middle of a list from a list with at least two elements

public E remove(int pos) {

First, we make sure we’re not removing from an empty list withanAssert.

Assert.pre(head != null, "Attempt to remove from an empty list");

Next, we can take care of the first item case.

// check for removal of the first item in the list
// this work for the one-element case, as head gets set to null
if (pos == 0) {

E retval = head.value();
head = head.next();
return retval;

}

In other cases, we need to find the item we want to remove and adjust some pointers.

So we need to have our “finger” on the elementbefore the one we want to remove, since that’s the
one whosenext pointer will need to be adjusted.

// remove an item at a non-first position
SimpleListNode<E> finger = head;
int count = 0;
// find the item before the one we want to remove

5



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

while (count < pos-1) {
count++;
finger = finger.next();
Assert.pre(finger != null, "Attempt to remove element at index " + pos

}
// finger is pointing to item pos-1
// make sure there is something at pos
Assert.pre(finger.next() != null, "Attempt to remove element at index " + pos
E retval = finger.next().value();
finger.setNext(finger.next().next());

return retval;

Removing everything is very simple.

public void clear() {
head = null;

}

What about all those list nodes? We still have references to them! Not to worry, Java’s garbage
collector will clean them up.

However, not all languages are garbage collected like Java.In C or C++, you need to be careful to
free (in C) ordelete (in C++) all of the objects you no longer need.

Let’s consider the complexity of our operations.

• add(0) : Θ(1)

• add(i) : Θ(i)

• add(n) : Θ(n)

• get/set(0) : Θ(1)

• get/set(i) : Θ(i)

• get/set(n-1) : Θ(n)

• remove(0) : Θ(1)

• remove(i) : Θ(i)

• remove(n-1) : Θ(n)

• get all values in sequence :Θ(n2) (hey, we need anIterator!)

• size() : Θ(n) (hey, we can do better if we remember this)

6



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

How do these compare to similar operations onVectors?

• adding at the front is easier.

• adding at the end is harder.

• adding in the middle, well it depends where.

• the cost is consistent, though, since there is no reallocation and copying to grow the structure.

• removing at the front is easier.

• removing at the end is harder.

• removing in the middle is probably similar.

• getting/setting an arbitrary value is harder.

What about space usage?

• there are no empty slots like we have inVectors

• but there’s an extra reference for each object stored! That’sΘ(n) space overhead.

We still have a couple of problems with this implementation that we’d like to address. First, the
Θ(n2) traversal is no good – we need anIterator.

Remember, an iterator must remember some state about the collection it’s visiting. With our
Vector iterator example, we just needed to remember the index of thenext item to be returned.
Remembering the index doesn’t help us here. We need to remember something about the internals
of the list to make this work. The most useful thing to remember here is the list node – that “finger”
we used in most of the methods we’ve looked at.

We’ll implement our iterator as an extension of the structure package’sAbstractIterator
abstract class:

class SimpleListIterator<E> extends AbstractIterator<E> { ...

Again, it’s not a public class, since no one except ourSimpleLinkedList is allowed to con-
struct one.

We need to have data to support the regular iterator operations, plus be able to reset the iterator, so
we need to have our iterator remember the head of the list and the “finger”:

protected SimpleListNode<E> current;
protected SimpleListNode<E> head;

7



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

and to construct one, we need to have the head of the list passed in:

public SimpleListIterator(SimpleListNode<E> t) {
head = t;
reset();

}

To reset, we just set the current tohead.

public void reset() {
current = head;

}

So thecurrent pointer always points to the next node whose value hasnot yet been returned.
From this, we can construct the remaining methods:

public boolean hasNext() {
return current != null;

}

public E next() {
E temp = current.value();
current = current.next();
return temp;

}

public E get() {
return current.value();

}

And in theSimpleLinkedList class, we have a method to create one:

public Iterator<E> iterator() {
return new SimpleListIterator<E>(head);

}

We also make ourSimpleLinkedList implementIterable so we can use it in “for each”
loops.

This entire implementation:

See Example:
/home/cs501/examples/SimpleLinkedList

We can improve the efficiency of thesize() method by maintaining an extra instance variable
that tracks how many elements are in the list.

Which methods would need to change to do this?

8



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

• count needs to be initialized in the constructor

• increment count in add

• decrement count in remove

• reset count to 0 in clear

• simplify size to return count

This seems worthwhile. We’ve added some complexity to our methods but only added a single
int to the size of the structure. The biggest disadvantage of adding a count is that we could forget
to update it in some circumstance, leading to an inconsistent structure. For example, there are three
different cases in theadd method, and we need to make sure we increment the count in each.

This is exactly what we find in the structure package’sSinglyLinkedList implementation.

See Structure Source:
/home/cs501/src/structure5/SinglyLinkedList.java

Maintaining a tail pointer

There’s another enhancement we can consider. Adding thingsto the end of the list seems like
something that will happen pretty often, and it’s anΘ(n) operation in our implementation.

Well, the only reason it’sΘ(n) is because we need to follow all the links from the head to find the
last element so we can add it.

We can fix that by maintaining another reference to the tail ofthe list.

• An empty list hashead=tail=null, a list w/one element hashead = tail = a reference
to that element, while in all other cases,head != tail.

• Then, anadd operation specifying the end becomes straightforward andΘ(1).

• It also would let usget or set the last element inΘ(1) time.

• But aremove from the end is stillΘ(n). We needtail’s predecessor to be able to remove
the last item, and we have to search all the way from the beginning to find it.

Still, this seems like a worthwhile enhancement. We add justone extra reference and that’s that.

It adds coding complexity toadd andremove methods since we must worry about resetting the
tail field. Even adding at the beginning may have to resettail field (why?).

Circular Lists
Can we simplify things further without changing any big-O behavior by noticing that tail node of
list has anext field that is always “wasted” – it is always equal tonull?

9



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

If we use that field to point to the beginning of the list, then we don’t need a separatehead field?

This is acircularly linked list. Thehead is always found astail.next()!

This is theCircularList in the structure package.

See Structure Source:
/home/cs501/src/structure5/CircularList.java

• With this implementation,add at the end is nowΘ(1).

• But now it takes one extra dereference (i.e., following a reference) to get tohead.

• Only contains, remove, andremoveLast are stillΘ(n).

• contains andremove involve searches and seem likely always to beΘ(n) (unless we
attempt to keep list in order and do binary search - which has its own problems - we’ll
consider this later..).

• However, why can’t we makeremoveLast Θ(1)? The problem is that we need to know
the predecessor in order to delete an element from the list.

Doubly-linked lists
In our implementations so far, references only go from the front to the back of the list. Why not
put them in the other direction instead? Well we could, but then it would be harder to delete from
the front.

So... we can put references in both directions.

This is a more significant change: our list nodes now need to change. We need an extra field to
hold a reference to the previous node, but the space overheadremainsΘ(n).

class DoublyLinkedListElement<E> {

protected E value;
protected DoublyLinkedListElement<E> next;
protected DoublyLinkedListElement<E> prev;

}

With this defined, it is now easy to define a doubly-linked list. This time we’ll keep track of both
the first (head) and last (tail) elements of the list so we can get totail quickly.

This is theDoublyLinkedList in the structure package.

See Structure Source:
/home/cs501/src/structure5/DoublyLinkedList.java

10



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Note that the constructor forDoublyLinkedListElements automatically sets back pointers
to maintain consistency.

removeLast is nowΘ(1), but the tradeoff is that now all addition and removal operations must
set one extra pointer in the list node. We must also worry about maintaining both thehead and
tail of the list, with complicated cases arising when adding and removing from a 0-, 1-, or
2-element list.

Design of List Classes
We now have a number of ways to implement linked list structures. To some extent, these are
all interchangeable functionally. We can add, retrieve, remove, search, though there are time and
space tradeoffs involved.

We would like to be able to use them interchangeably. This is what Java interfaces and abstract
classes allow us to do.

We start by defining an interface that we’ll use for a variety of implementations of lists:

• Accessors:isEmpty(), size(), get(), contains(), iterator()

• Mutators:add(), set(), remove(), clear()

See Structure Source:
/home/cs501/src/structure5/List.java

First notice that it extendsStructure. This means aList requires the basic operations we
expect on any of our structures.

See Structure Source:
/home/cs501/src/structure5/Structure.java

The text has a simple example of reading in successive lines from a text and adding each line to
the end of a list if it doesn’t duplicate an element already inthe list. This is easily handled with the
operations provided.

AbstractLists

TheList interface requires a lot of methods, many of which will be thesame in all of the imple-
mentations. So the structure package defines an abstract class for this:

See Structure Source:
/home/cs501/src/structure5/AbstractList.java

Then each of our actual list implementationsextends AbstractList, and needs only to fill
in the methods not already provided.

Vector as a List

11



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Given this, we can imagine another implementation of theList interface.

Vector already provides all of the methods required by theList interface. In the structure pack-
age,Vector extends AbstractList. In the Java API, this explains the nameArrayList.

So we can use aVector as a “list” as well. Some of the operations are more expensive, but
anywhere we want aList, we can use aVector.

This leaves 4 classes that implement theList interface (all by extendingAbstractList) in
the structure package:

• SinglyLinkedList

• CircularList

• DoublyLinkedList

• Vector

You should understand how each of these structures work, know how to use them correctly, should
be able to develop the internals of any of the methods in theseclasses, and should understand the
time and space complexities of the implementations.

12


