
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Introduction and Overview

Welcome to Data Stuctures and Algorithm Analysis!

Why Take Data Structures and Algorithms?
In this course, you will become a more sophisticated programmer and problem solver, as you
learn about designing correct and efficient algorithms and data structures for use in your programs.
Along the way, you will:

• hone your problem solving skills,

• gain experience in programming in general, Java in particular,

• learn how to implement algorithms and data structures in Java,

• learn how to evaluate and visualize data structures and algorithms,

• learn how to understand (and prove) some properties of data structures and algorithms,

• learn how to consider the relative merits of different structures and algorithms, and

• learn how to design large programs (in an object-oriented way) so that it is easy to modify
them

I think of this as two courses in one - you become a more expert programmer with new data
structures and algorithms, and you become a better computerscientist by analyzing those data
structures and algorithms so you can design and use them efficiently and appropriately.

We will do very little with graphics and animations, insteadchoosing to focus on the relatively sim-
ple textual interface often used by advanced programmers. But the algorithms and data structures
may be used in (and are often essential to) those graphical programs. Your additional programming
experience will allow you to understand and make use of the extensive base of reusable code, Java
and otherwise, that is available to today’s programmers, even though we will use only a limited
subset of those tools here.

What is an Algorithm?
A possible definition: a step-by-step method for solving a problem.



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

An algorithm does not need to be something we run on a computerin the modern sense. The notion
of an algorithm is much older than that. But it does need to be a formal and unambiguous set of
instructions.

The good news: if we can express it as a computer program, it’sgoing to be pretty formal and
unambiguous.

Example: Computing the Max of 3 Numbers

Let’s start by looking at a couple of examples and use them to determine some of the important
properties of algorithms.

Our first example is finding the maximum among three given numbers.

Any of us could write a program in our favorite language to do this:

int max(int a, int b, int c) {
if (a > b) {

if (a > c) return a;
else return c;

}
else {

if (b > c) return b;
else return c;

}
}

The algorithm implemented by this function or method hasinputs (the three numbers) and one
output(the largest of those numbers).

The algorithm is definedpreciselyand isdeterministic.

This notion of determinism is a key feature: if we present thealgorithm multiple times with the
same inputs, it follows the same steps, and obtains the same outcome.

A non-deterministicprocedure could produce different outcomes on different executions, even
with the same inputs.

Code is naturally deterministic – how can we introduce non-determinism?

It’s also important that our algorithm will eventually terminate. In this case, it clearly does. In
fact, there are no loops, so we know the code will execute in just a few steps. An algorithm is
supposed to solve a problem, and it’s not much of a solution ifit runs forever. This property is
calledfiniteness.

Finally, our algorithm gives the right answer. This very important property,correctness, is not
always easy to achieve.

It’s even harder toverifycorrectness. How can you tell if you algorithm works for all possible valid
inputs? An important tool here: formalproofs.

2



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

A good algorithm is alsogeneral. It can be applied to all sets of possible input. If we did not care
about generality, we could produce an algorithm that is quite a bit simpler. Consider this one:

int max(int a, int b) {
if (a > 10 && b < 10) return a;

}

This gives the right answer when it gives any answer. But it does not compute any answer for many
perfectly valid inputs.

We will also be concerned with theefficiencyin both time (number of instructions) and space
(amount of memory needed).

Why Study Algorithms?

The study of algorithms has boththeoreticalandpractical importance.

Computer science is about problem solving and these problemsare solved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and correctness of these solutions.

Practically, a study of algorithms provides an arsenal of techniques and approaches to apply to the
problems you will encounter. And you will gain experience designing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both thedesignandanalysisof algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algorithms are important, but it is also impor-
tant to know if there are other possible algorithms that might be better. We would like to establish
theoreticallower boundson the time and space needed by any algorithm to solve a problem, and
to be able to prove that a given algorithm isoptimal.

Sample Problems

Here are some examples of the kinds of problems you will learnto solve. In some cases, we will
consider algorithms at a high level. In others, we will consider them more carefully and analyze
their efficiency. And in some cases, we will implement them.

1. Find items in a large collection with particular features(perhaps the 10 largest).

2. Find the shortest path from Albany to Albuquerque on the national highway system (and do
it efficiently).

3. Develop a game decision tree to allow a computer player fora game such as chess.

4. Design and implement a scientific calculator.

3



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

5. Design and implement a simulator that lets you study traffic flow in a city or airport.

6. Design and implement a pattern matching system to find a particular sequence of nuceleotides
in the sequenced DNA of a given organism.

7. Design and implement a simulation for some physical phenomenon (e.g., fluid flow).

8. Analyze solutions of problems such as the Towers of Hanoi.

Some of the approaches we’ll consider include:

• Brute force

• Divide and conquer

• Decrease and conquer

• Transform and conquer

• Greedy approach

• Dynamic programming

• Backtracking and branch and bound

• Space and time tradeoffs

The study of algorithms often extends to the study of advanced data structures. Some should be
familiar; others likely will be new to you:

• lists (arrays, linked, strings)

• stacks/queues

• priority queues

• graph structures

• tree structures

• sets and dictionaries

4


