Computer Science 501

Data Structures & Algorithms

The College of Saint Rose
Fall 2013

Topic Notes: Generics

We saw in our examples usinggct or s that the items stored within oMect or s are treated as
instances otl ass (bj ect .

This is quite convenient in that we can store whatever typebggcts we wish, and until version
1.4 of the Java Development Kit, this was the preferred agugro

This approach does have a few disadvantages:

1. When we retrieve an item from oMect or , we need to use a cast before we can treat it as
an instance of its own specific type.

2. If we make a programming error and mistakenly place arcbbjeone type into th&ect or
but then cast it to a different type upon retrieval, your pamg will crash with aruntime
error. Ideally, we would be able to detect such errors sooner — wlecompile.

One approach to dealing with these disadvantages is to mgpleaspecialized version of our
Vect or (or whatever other) data structure that holds exactly the tf items we wish, much like
we can declare arrays of any type.

To implement, for example,\dect or that holdd nt eger s (we could callitl ass | nt eger Vect or),
we could take th&/ect or implementation, and instead of usi@fj ect s as the type for our in-
ternal array and for the method parameter and return typesyould usd nt eger .

This would take care of both disadvantages we noted in thggnadiVect or implementation.
Casts are no longer needed because the return type of metidasgiet would bel nt eger .
And perhaps more importantly, if we attempted to write cdu stored anything other than an
| nt eger (or a subclass of nt eger), the Java compiler would flag the error dampile-time
error), which is much more convenient time to detect an error thhaaratime

But unfortunately, this “solution” means writing a brand nspecializedvect or -like class for
each data type we need to store.

Starting with JDK 1.5 (Java 5), Java was extended to allowsctiefinitions to includgeneric,
or parameterized data types. This means that we can write a definition of the structuragidata
types that are unspecified (much like the value of a methodnpeter is unspecified) until we
create an instance of the class.

We can see generic versionsAgsoci at i on andVect or in use:

See Example:
/ home/ cs501/ exanpl es/ Spel | s/ Spel | sVector T.] ava See Example:
/ homre/ cs501/ exanpl es/ Pocket Change/ Pocket ChangeT. j ava:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

As you can see in the examples, we specify the data type otahesiwe will be storing in the
generic data structure in angle brackets after the straidyyre. For example, theect or of
| nt eger:

Vect or <l nteger> intVec = new Vector<Integer>();

With this declaration, any attempt to store an item whichatsaf typel nt eger or any treatment
of an item retrieved as a ndmt eger type will result in a compile-time error.

The generic data types, includitgct or andAssoci at i on are providedintheai | ey. j ar
library, but you will need to nport structure5. *; instead of nport structure. *;
at the top of your program.

Note: we would like to be able to use a primitive type as a tygpameter:
Vector<int> intVec = new Vector<int>();

but this is not permitted — the type parameters must be otyjpes. Fortunately, with autoboxing,
this is not much of an inconvenience to programmers.

From here on, we will make use of the generic classes.

Generic Associ at i on Implementation

See Structure Source:
/ home/ ¢s501/ src/ structureb/ Associ ation. java

In the Associ at i on class, we in fact make use of two type parameters, one for elieakd
one for the value. Rather than treating bothCh$ ect s as in the non-generigssoci ati on
implementation, we usk for the type of the key an¥ for the type of the value.

Everywhere we refer to the key and value in type declarationgariables, parameters, or return
types, we can usk andV, respectively.

The rest of the code for the class remains unchanges fronotivg@nericAssoci at i on.

Generic Vect or Implementation

The generid/ect or class is parameterized on the type of the items (elementd) dontain. The
implementation usei as the type.

For the most part, thgect or implementation is straightforward. However, a technicalygpem
comes into play when we declare thect or ’s internal array. This is not something we will
concern ourselves with at this point, but the descriptiothefproblem and of its solution within
structure is worth reading in the text.

