Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2013

Topic Notes: Complexity and Asymptotic Analysis

Having now studied one major abstract data typeMbet or , we will now step back and look at
important efficiency issues before moving on to more comapdid and interesting structures.

Consider these observations:

e A programmer can use\ect or in contexts where an array could be used.

e The Vect or hides some of the complexity associated with inserting orogng values
from the middle of the array, or when the array needs to beedsi

e As a user of &/ect or, these potentially expensive operations all seem verylsimpt’s
just a method call.

e But.. programmers who make use of abstract data types needawdre of the actual costs
of the operations and their effect on their program’s efficie

We will now spend some time looking at how Computer Scientiséssure the costs associated
with our structures and the operations on those structures.

Costs ofVect or Operations

When considering/ect or implementations, we considered two ways to “grovéct or s that
need to be expanded to accomodate new items.

e When growing by 1 at a time, we saw that to addems, we would have to copy x "T—l
items between copies of the array inside ezt or implementation.

e When we doubled the size of the array each time it needed tofmnded, we would have
to copy a total ofr — 1 items.

These kinds of differences relate to the tradeoffs made wlbeeloping algorithms and data struc-
tures. We could avoid all of these copies by just allocatihgige array, larger than we could ever
possibly need, right at the start. That would be very efficiarterms of avoiding the work of
copying the contents of the array, but it is very inefficienterms of memory usage.

This is an example of &ame vs. space tradeoff. We can save some time (do less computing) by
using more space (less memory). Or vice versa.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We also observe that the cost to add an elemenMecd or is not constant! Usually it is —when
theVect or is already big enough — but in those cases wher&/dw or has to be expanded, it
involves copying over all of the elements already inWeet or before adding the new one. This
cost will depend on the number of elements inYeet or at the time.

The cost of inserting or removing an element from the middlbeginning of avect or always
depends on how many elements are in\teet or after the insert/remove point.

Asymptotic Analysis

We want to focus on how Computer Scientists think about thierdihces among the costs of
various operations.

There are many ways that we can think about the “cost” of aquéatr computation. The most
important of which are

e computational cost: how many “basic operations” of some kind does it take to aqash
what we are trying to do?

— If we are copying the elements of one array to another, we naigiint the number of
elements we need to copy.

— In other examples, we may wish to count the number of timegyaferation, such as
a multiplication statement, takes place.

— We can estimate running time for a problem of siz&d’(n), by multiplying the execu-
tion time of our basic operation,,, by the number of basic operatiors(n):

T(n) % cuyC(n)
e space cost: how much memory do we need to use?

— may be the number of bytes, words, or some unit of data staraciructure

The operations we’ll want to count tend to be those that happsde of loops, or more signifi-
cantly, inside of nested loops.

Finding the “Trends”

Determining an exact count of operations might be usefubmes circumstances, but we usually
want to look at therends of the operation costs as we deal with larger and larger prolsizes.

This allows us to compare algorithms or structures in a geérert very meaningful way without
looking at the relatively insignificant details of an implentation or worrying about characteristics
of the machine we wish to run on.

To do this, we ignore differences in the counts which are @msand look at an overall trend as
the size of the problem is increased.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

For example, we'll treat and 3 as being essentially the same.

Similarly, w==n?, 2n* and1000n? are all “pretty much™?.

With more complex expressions, we also say that only the sigstficant term (the one with the
largest exponent) is important when we have different pafrthie computation taking different
amounts of work or space. So if an algorithm uses n? operations, as gets large, the? term
dominates and we ignore the

In general if we have a polynomial of the forgn* + a,n*~! + ... + a;, say it is “pretty much”
n*. We only consider the most significant term.

Defining “Big O” Formally
We formalize this idea of “pretty much” usiragymptotic analysis:

Definition: A function f(n) € O(g(n)) if and only if there exist two positive constantandn
such thatf(n)| < c- g(n) for all n > ny.

Equivalently, we can say thdtn) € O(g(n)) if there is a constant such that for all sufficiently
largen, |%\ <ec.

To satisfy these definitions, we can always choose a realig h(r), perhaps:™”, but as a rule,
we want ag(n) without any constant factor, and as “small” of a function a&scan.

So if bothg(n) = n andg(n) = n? are valid choices, we chooggén) = n. We can think of
g(n) as an upper bound (within a constant factor) in the long-teetmavior of f(n), and in this
exampley is a “tighter bound” tham?.

We also don't care how big the constant is and howhjghas to be. Well, at least not when
determining the complexity. We would care about those irtjgecases when it comes to imple-
mentation or choosing among existing implementations,resiaee may know that is not going

to be very large in practice, or wherhas to be huge. But for our theoretical analysis, we don’t
care. We're interested irelative rates of growth of functions.

Common Orders of Growth

The most common “orders of growth” or “orders of complexigrée

e O(1) — for anyconstant-time operations, such as the assignment of an element irray a
The cost doesn’t depend on the size of the array or the posit@re setting.

e O(logn) — logarithmic factors tend to come into play in “divide and conquer” alguris.
Example: binary search in an ordered array. @ements.

e O(n) — linear dependence on the size. This is very common, and examplesiénthe
insertion of a new element at the beginning of an array coimgi» elements.

e O(nlogn) — this is just a little bigger tha®w(n), but definitely bigger. The most famous
examples are divide and conquer sorting algorithms, whiehwil look at soon.

3

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

e O(n?) — quadratic. Most naive sorting algorithms ax@(n?). Doubly-nested loops often
lead to this behavior. Example: matrix-matrix addition fox n matrices.

e O(n?) —cubic complexity. Triply nested loops will lead to this behavidrgood example is
“naive” matrix-matrix multiplication. We need to dooperations (a dot product) on each of
n? matrix entries.

e O(n*), for constantk — polynomial complexity. Ask grows, the cost of these kinds of
algorithms grows very quickly.

Computer Scientists are actually very excited to find polymabtime algorithms for seem-
ingly very difficult problems. In fact, there is a whole cladsproblems (NP) for which if
you could either come up with a polynomial time algorithm,matter how bigk is (as long
as it's constant), or if you could prove that no such algonigxists, you would instantly be
world famous! At least among us Computer Scientists. We waly introduce the idea of
NP and NP-Completeness later this semester.

e O(2") —exponential complexity. Recursive solutions where we are searchingdiores‘best
possible” solution often leads to an exponential algoriti@anstructing a “power set” from
a set ofn elements require®@(2") work. Checking topological equivalence of circuits is one
example of a problem with exponential complexity.

e O(n!)—factorial complexity. This gets pretty huge very quickly. We are alseeonsidering
one example on the first problem set: traversing all pernuutsiof ann-element set.

e O(n™) —even more huge

Suppose we have operations with time comple&itfog n), O(n), O(nlogn), O(n?), andO(2").

And suppose the time to solve a problem of sizie . How much time to do problem 10, 100, or
1000 times larger?

Time to Solve Problem

size [n] 10n | 100n | 1000n
O(1) t t t t
O(logn) t| >3t | ~6.5¢ < 10t
O(n) t | 10t 100t 1,000t
O(nlogn) | t | > 30t | ~ 650t | < 10,000¢
O(n?) t | 100t | 10,000t | 1,000,000t
02" L |~ 0 | ~ ¢100 ~ {1000

Note that the last line depends on the fact that the congdntatherwise the times are somewhat
different.

See Example:
/[home/ cs501/ exanpl es/ Ef fi ci encyd asses/ RunTi nes. j ava

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Now let’s think about complexity from a different perspgeti

Suppose we get a faster computer, 10, 100, or 1000 times taste the one we had, or we’re
willing to wait 10, 100, or 1000 times longer to get our sabuatif we can solve a larger problem.
How much larger problems can be solved? If original machilogvad solution of problem of size
k in timet, then how big a problem can be solved in some multipl&?of

Problem Size
speed-up | 1x | 10x | 100x | 1000x
O(log n) k klo k,lOO klOOO
O(n) k| 10k | 100k | 1,000k
O(nlogn) | k | <10k | < 100k | < 1,000k
O(n?) k| 3k+ 10k 30k+
O(2™) k| k+3 | k+7 k410

For an algorithm which works if(1), the table makes no sense - we can solve as large a problem
as we like in the same amount of time. The speed doesn’'t mak®yimore likely that we can
solve a larger problem.

See Example:
/ home/ cs501/ exanpl es/ Ef fi ci encyd asses/ Probl entSi zes. j ava

Examples

o Difference tableQ(n?)

e Multiplication table,O(n?)

¢ Insertingn elements into a Jawdect or or ArrayLi st using defauleadd, O(n)

e Insertingn elements into a Jawdect or or Ar r ayLi st usingadd at position 00 (n?)

Some algorithms will have varying complexities dependinglte specific input. So we can con-
sider three types of analysis:

e Best case: how fast can an instance be if we get really lucky?

— find an item in the first place we look in a search{)
— get presented with already-sorted input in certain sogirngedures -©(n)

— we don't have to expand ¥dect or or ArrayLi st when adding an element at the
end -O(1)

e Worst case: how slow can an instance be if we get really uglick

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

— find an item in the last place in a linear searo)
— get presented with a reverse-sorted input in certain gppincedures ©(n?)
— we have to expand¥ect or or ArrayLi st to add an element©(n)

e Average case: how will we do on average?

— linear search — equal chance to find it at each spot or not at(h)
— get presented with reasonably random input to certainrgpptiocedures ©(n logn)

— we have to expand ¥ect or /Arr ayLi st sometimes, complexity depends on how
we resize and the pattern of additions

Note: this isnot the average of the best and worst cases!

Basic Efficiency Classes
Big O is only one of three asymptotic notations we will use.

Informally, the three can be thought of as follows:

e O(g(n)) is set of all functions that grow at tteame rate aor slower than g(n).
e Q(g(n)) is set of all functions that grow at treame rate asor faster than g(n).

e O(g(n)) is set of all functions that grow at tteame rate agy(n).

We previously gave the formal definition 6f(g(n)):

Definition: A function f(n) € O(g(n)) if and only if there exist two positive constantandn,
suchthatf(n)| < c¢- g(n) forall n > ny.

Now, let's remember how we can use this definition to prove ¢ghé&unction is in a particular
efficiency class.

Let’'s show that
500n + 97 € O(n?)

by finding appropriate constantandn, to match the definition.

Since all we need to do is to produaay pair of constants to meet the requirement, we have a
great deal of freedom in selecting our constants. We coudgtiseery large constants that would
satisfy the definition. But let’s see if we can obtain somdyamall (“tight”) constants.

Note that
500n + 97 < 500n +n

forn > 97. And
500n +n = 501n < 501n?

6

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

indicating that we can use= 501.
So,c = 501 andny = 97 will work.

Alternately, we could notice that
500n + 97 < 500n + 97n

forn > 1. And
500n + 97n = 597n < 597n?

indicating a value of = 597 to go withn, = 1.
Similar arguments work for other polynomials.
To show that
27n° + 12n* + 25000 € O(n®)

We can proceed as follows:

27n® + 1202 + 25000 < 27 + 12n2 + n
for n > 250000. And
27n +12n% +n < 273 + 12n3 + n? = 4003
So we can use = 40 andn, = 25000 to satisfy the definition, showing thaTn?3+12n2+25000
O(n?).

Next, let's work toward a more general result:
an® +bn +d € O(n?)

for positive constants, b, d.

We proceed by noting that
an*+bn+d<an*+bn+n

forn > d, and
an® +bn+n=an®+ (b+ 1)n < an® +n’

forn > b+ 1, and
an®* +n? = (a + 1)n?

which leads us to constants ©& a + 1 andny = max(d, b+ 1).
Next, we consider the formal definitions Qfand©.

Definition: A function f(n) € Q(g(n)) if and only if there exist two positive constantsindn,
such thatf(n)| > c¢- g(n) for all n > ny.

Definition: A functionf(n) € ©(g(n)) if and only if there exist three positive constantsc,, and
no such thats, - g(n) < |f(n)| < e - g(n) forall n > ny.

7

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Similar techniques can be used to prove membership of aifumict these classes.

To show thatl5n? + 37 € Q(n), we need to show a lower bound instead of an upper bound as
we did for Big-O proofs. So instead of making our function &rgp help make progress, we can
make our function smaller.

15n% 4+ 37 > 15n° > 15n

where the latter inequality holds for any> 1. So we can choos®, = 1 andc = 15 to satisfy the
definition.

To show thatin(n — 1) € ©(n?), we need to show both the upper and lower bounds hold.
1n(n —1) = 1n2 ——n < an
2 2 2 2

for n > 0. So for the right inequality (the upper bound), we can chagse % andngy = 0.

To prove the left inequality, we can observe that

whenn > 2, and

So for the lower bound, we can choase= }l but we neechy = 2. This gives us, overall, = i
1 = %, andno = 2.

Some Useful Properties

As we work with these asympotic notations, the followingpeudies will often prove useful. We
will not prove them formally, but convince yourself that sieehold (and use them as needed!).

e f(n) € O(f(n))

o f(n) € Og(n)) iff g(n) € Q(f(n))

o If f(n) € O(g(n)) andg(n) € O(h(n)), thenf(n) € O(h(n))

o If fi(n) € O(gi(n)) andfo(n) € O(g2(n)), thenfi(n) + fo(n) € O(max{gi(n), g2(n)})

Using Limits

A powerful means of comparing the orders of growth of funcsianvolves the use of limits. In
particular, we can compare functiofi§n) andg(n) by computing the limit of their ratio:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

1)
M gn)

Three cases commonly arise:

e 0: f(n) has a smaller order of growth thatw), i.e.,, f(n) € O(g(n)).
e ¢ > 0: f(n) has the same order of growth@s:), i.e,, f(n) € O(g(n)).

e oco: f(n) has a larger order of growth thain), i.e, f(n) € Q(g(n)).

Two rules that often come in handy when using this technique:

L'H Opital’'s Rule states

and Stirling’s formula states

for large values of:.

Let’s consider some examples:

1. Comparef(n) = 20n* + n + 4 andg(n) = n®.

. 20n*+n+4
lim —s =
n—oo n

so f has a slower growth than f(n) € O(g(n)).

0

2. Comparef(n) = n? andg(n) = n? — n.

2

lim = lim =1
nboon?2—mn noocon —1

so f andg have the same growth rate.

3. Comparef(n) = 2'°¢™ andg(n) = n?.

210g n nlog 2

son? grows faster.

CSC 501 Data Stuctures and Algorithm Analysis

4. Comparef(n) = log(n®) andg(n) = log(n?).

log(n®) .. 3log(n) 3

n 300 log(nt) ns00 4log(n) 4
so these grow at the same rate.
5. Comparef(n) = log,(n) andg(n) = n.

1 1
lim 128200 _) mwe
n—o0 n n—oo 1

son grows faster (as we know anyway).

Fall 2013

Analyzing Nonrecursive Algorithms
We will next look at how to analyze non-recursive algorithms

Our general approach involves these steps:

1. Determine the parameter that indicates the input size,
2. ldentify the basic operation.
3. Determine the worst, average, and best cases for inpstzeof.

4. Specify a sum for the number of basic operation executions

5. Simplify the sum

Example 1: Finding the Maximum Element

Ouir first algorithm to analyze.

max_el enent (A[0..n-1])

maxval = A 0]
for (i=1to n-1)
if (Ali] > maxval) maxval = A[i]

return maxval ;

10

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

The input size parameteris the number of elements in the array.

The basic operation could be the comparison or the assigniméime for loop. We choose the
comparison since it executes on every loop iteration.

Since this basic operation executes every time throughathye legardless of the input, the best,
average, and worst cases will all be the same.

We will denote the number of comparisons(@g:). There is one comparison in each iteration of
the loop, so we can (overly formally) specify the total as:

—_

n—

Cn)=>» 1=n—-1€06(n).

=1

Example 2: Element Uniqueness Problem

Our next example algorithm is one that determines whethef #ie elements in a given array are
distinct.

uni que_el enent s(A[0. . n-1])

for (i=0 to n-2)
for (j=i+1 to n-1)
if (Ali] == A[j]) return fal se

return true

Again, the input size parameteris the number of elements in the array.
The basic operation is the comparison in the body of the ilog.

The number of times this comparison executes depends orharhetd how quickly a matching
pair is located. The best case is tA§t0] andA[1] are equal, resulting in a single comparison.
The average case depends on the expected inputs and hownikéthes are. We do not have
enough information to analyze this formally. So we will fecon the worst case, which occurs
when there is no match and all loops execute the maximum nuohbienes.

How many times will the comparison occur in this case? Therdobp executes — 1 times. For
the first execution of the inner loop, the comparison exexoute?2 times. The second time around,
we don — 3 comparisons. And so on until the last iteration that exejutst once.

So we compute our worst case number of comparisons:

11

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Q
—~
S
~—
Il
i
(V]
3
L
—_

T
b o
<
Il
.
+
—

(n—1)—(G+1)+1]

Il
3 o«
‘ ﬁM
o ©

™

~
I
o

(n—1-—1)

7
no

n

)Y

2
i=0

I
E)
|
—

2

Il
o

From here, we can factor out t{e — 1) from the first summation and apply the second summation
rule from p. 476 to the second summation to obtain:

n—2

= (n-ny 1~ =2
:(n—l)z—(n_Q)Z("_l) :2(”;1) _(n—2)2(n—1)
_nlnl) o O (n?).

2

This isn’t surprising at all, if we think about what the loogre doing.

Example 3: Matrix Multiplication

Recall the algorithm for multiplying twa x n matrices:
matmul t (A[0..n-1][0..n-1],B[0..n-1][0..n-1])

for (i=0 to n-1)
for (j=0 to n-1)
aqillil =0
for (k=0 to n-1)
Aillil += Ali][kl *B[K][]]

return C

The input size is measured by the order of the matrix.

The basic operation could be the multiplication or the addiin the innermost loop. Generally, we
would choose the multiplication, but since they both hapipersame number of times, it doesn’t
matter which we pick We just want to count the number of tintined ine executes.

12

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

The best, average, and worst case behavior are identiealodips all need to execute to comple-
tion.

So we're ready to set up our summation for the number of nidépons:

7
—
3
|
—
3
|
—
3
|
—
3
|
—
3
|
—

M(n) = 1= n=>9Y n®=n’
0 i=

=)
Il
=)
Il
=)

% J %

]
o
<
i
(e}
i

We can go a step further and estimate a running time, if theafos multiplication on a given
machine is,,,.

T(n) = cuM(n) = cpn®.

And this can be extended to include additions (where each(of additions costs,.

T(n) ~ cnM(n) + coA(n) = cun® + can® = (e + o™

Which is just a constant multiple af.

Example 4: Number of Binary Digits Needed for a Number

We next consider a very different example, an algorithm temheine how many bits are needed to
represent a positive integer in binary.

bi nary(n)

count =1

while (n > 1)
count ++
n = floor(n/2)

return count

Our summation techniques will not work here — while this isaecursive algorithm, the approach
here will involve recurrence relations, which are usuajhpléed to recursive algorithm analysis.
So we delay our answer to this one until we have seen thatitpetn

Analyzing Recursive Algorithms

Our approach to the analysis of recursive algorithms difssmewhat. The first three steps are the
same: determining the input size parameter, identifyirggltasic operation, and separating best,
average, and worst case behavior.

13

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Setting up a summation is replaced by setting up and solviegwarence relation.

Example 1. Computing a Factorial

A simple recursive solution to find!:

factorial (n)

if (n==0) return 1
el se return nxfactorial (n-1)

The size isn and the basic operation is the multiplication in the elsé. pHnere is no difference
between best, average, and worst case.

You are very familiar with recurrence relations from yourtmbackground. The recurrence for
this problem is quite simple:

M(n)=M(n—-1)+1

The total number of multiplications for! is the number of multiplications fam — 1)!, plus the 1
to get fromn — 1 ton.

We do need a stopping condition for this recurrence, justebave a stopping condition for the
algorithm. Form = 0, we do not need to do any multiplications, so we can add thi@licondition
M(0) = 0.

We can easily determine th&f(n) = n just by thinking about this for a few minutes. But instead,
we will worth through this by using back substitution.

Mn)=Mmn-1)+1
—[M(n—2)+1]+1=Mn—2)+2
— [M(n—3)+1]+1=Mn-3)+3

If we continue this pattern, we can get down to

Example 2: Towers of Hanoi
You are all likely to be familiar with the Towers of Hanoi.

Recall that solving an instance of this problem fodisks involves solving an instance of the
problem of sizen — 1, moving a single disk, then again solving an instance of thélpm of size
n — 1. This leads to the recurrence:

14

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Again, we can proceed by backward substitution.

M(n)=2M(n—-1)+1
=22M(n—2)+ 1] +1=2°M(n—2)+2+1
=222M(n—3)+ 1] +2+1=2’M(n—3) +2* + 2" +2°.

Continue this procedure until we obtain

M) =2"""M1)+2" 242" 3 4 +2+1
=22 -) =2"—1€0(2").

Example 3: Number of Binary Digits Needed for a Number

We return now to the problem of determining how many bits areded to represent a positive
integer in binary.

We can recast the problem recursively:

bi nary_rec(n)

if (n ==1) return 1
el se return binary_rec(floor(n/2)) + 1

In this case, we will count the number of addition). For a call to this function, we can see
that A(1) = 0, and

A(n) = A(|n/2])+1

whenn > 1.

The problem is a bit complicated by the presence of the flaaectfan. We can only be precise and
apply backward substitution only if we assume thas a power of 2. Fortunately, we can do this
and still get the correct order of growth (by temoothness rule).

So assuming = 2%, we know thatA(1) = A(2°) = 0 and

15

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

ARy = A2 +1

for £ > 0. So we can proceed by backward substitution.

A@2F)y =A@ +1

Sincen = 2%, k = log, n, SO we have

A(n) =logyn € O(logn).

Master Theorem

Many of the recurrences here will arise when analyzingde and conquer algorithms, a a very
common and very powerful algorithm design technique. Theega idea:

1. Divide the complete instance of problem into two (sometmmore) subproblems that are
smaller instances of the original.

2. Solve the subproblems (recursively).

3. Combine the subproblem solutions into a solution to thepteta (original) instance.

While the most common case is that the problem of size divided into 2 subproblems of size
5. Butin general, we can divide the problem irtGubproblems of siz&, wherea of those
subproblems need to be solved.

This leads to a general recurrence for divide-and-conguuri@ms:

T(n) = aT(n/b) + f(n), wheref(n) € ©(n?),d > 0.

When we encounter a recurrence of this form, we can usendster theorem to determine the
efficiency class of

T(n) =< O(nilogn) if a="5b"

O(nlosve) if a > b?

{ O(n4) if a < b?

16

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Application of this theorem will often allow us to do a quickadysis of many divide-and-conquer
algorithms without having to solve the recurrence in detail

Empirical Analysis

Much of our work this semester will be a mathematical analgéihe algorithms we study. How-
ever, it is also often useful to perform ampirical analysis — counting operations in or timing an
actual execution of an algorithm.

Let's see how we can perform a simple empirical analysis dtigecalgorithms we’ve considered:
matrix-matrix multiplication.

See Example:
/ home/ cs501/ exanpl es/ Mat Mul t

Many factors make such an analysis difficult to perform witly degree of accuracy.

System clock precision may be quite low. Some very fast dipgramay measure as 0.

Subsequent runs of the same program may give differentisesul

— Take the average? Take the min?

— Modern operating systems are time shared — time taken byprogram may depend
on other things happening in the system.

As problem sizes vary, unexpected effects from cache angtaal memory may come into
play.

When considering algorithms whose performance dependonpht values as well as size,
how do we choose data? Randomly? How best to achieve the euage/case behavior?

17

