Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Binary Search Trees

Possibly the most common usage of a binary tree is to stoeefaiatjuick retrieval.

Definition: A binary tree is dinary search tree (BST) iff it is empty or if the value of every node
is both greater than or equal to every value in its left sib#med less than or equal to every value
in its right subtree.

Note that a BST is an ordered structure. That is, it maintdinef &s elements in order. Like our
other ordered structures, this restriction will allow usbtald more efficient implementations of
the most important operations on the tree.

Binary Search Tree Implementation

Because it stores items in order, our BST will implement@hder edSt r uct ur e interface. We
also extendAbst r act St r uct ur e, as we have done with most of our advanced data structures.

See Structure Source:
/ home/ cs501/ src/ structureb5/ Bi narySear chTree. j ava

First, we note that the implementation does not expose #eertodes, as thg naryTr ee im-
plementation did. This is precisely because we need to be nestrictive to enforce the ordered
nature of the structure.

We do, however, make use of the existBignar y Tr ee implementation to take care of the details
of storing the tree. The public methodsRifnar y Sear chTr ee then make use of the underlying
Bi naryTr ee as appropriate.

In addition to the underlyinddi nar yTr ee, whose root is stored as an instance variable, the
implementation maintains a count of the number of nodes antembers Lonpar at or (by
default, theNat ur al Conpar at or).

Any interesting operation in oli nar ySear chTr ee (get , add, r enove) has to begin with a
search for the correct place in the tree to do the operationiriplementation has a helper method

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

used by all of these to do just that. We want to find Baear y Tr ee whose root either contains
the value, or, if the value is not to be found, the node whoseeastent child would contain the
value.

This is just a binary search, and is performed in the protectethod ocat e.

Next, let's consider thadd method. We will be creating a nefdi nar yTr ee with the given
value, and setting parent and child links in the tree to pthsenew value appropriately.

We need to consider several cases:
1. We are adding to an empty binary tree, in which case we jagerthe new node the root of
the BST.

2. We add the new value as a new leaf at the appropriate plaite itree as the child of a
current leaf. For example, add 5.5 to this tree:

to get

3. If the value is one that is already in the tree, the search st@p early, in which case we
need to add the new item as a child of the predecessor of theefoadd.

For example, adding 9 to the tree above:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We can choose to add duplicate values as either left or rigildren as long as we’re con-
sistent. Our implementation chooses to put them at the left.

Our add implementation used a helper methpdedecessor. We have this, plus a helper
method to find thesuccessor.

These are pretty straightforward. Our predecessor isginmiost entry in our left subtree, and the
successor is the leftmost entry in the right subtree.

Theget method is very simple. It's justbocat e, followed by a check to make sure the value
was found at the location.

r enove is more interesting.

Again, there are a number of possibilities:

1. We are removing a leaf, which is very straightforward.

2. We are removing the root of the entire tree, in which case&ezl to change the root of the
BST.

3. We are removing an internal node, in which case we need tgentlee children into a single
subtree to replace the removed internal node.

4. The item is not found, so the tree is unmodified and we ratuin .

The implementation separates out three important cas@sovieg the root, removing a node

which is a left subtree, or removing a node which is a righti# In each case, we replace the
removed node with a tree equivalent to its two subtrees, etetggether. This is accomplished
through ther enoveTop method.

This method is also broken into a number of cases:

1. Easy cases: If either child of top is empty, just use therthild as the new top. Done.

2. Another easy case: top’s left child has no right child. éJgust assign top’s right to be the
right child of left child and call the left child the new top.
3. The more complex case remains: left child has a right child

Here, we will proceed by locating the predecessor of the tupenmake that the new top,
and rearrange the subtrees in the only way that retains tlez of the entire tree.

What about complexity of these operations?

add, get , cont ai ns, andr enove are all proportional to the height of the tree. So if the tee |
well-balanced, these af&(logn), but all are®(n) in the worst case.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Tree Sort
One of many ways we can use a BST is for sorting.

We can build a BST containing our data and then do an inordegrsal to retrieve them in sorted
order. Since the cost of entering an element into a (balgrmedry tree of size: is log n, the cost
of building the tree is

(log1) + (log2) + (log 3) + - - - + (logn) = O(nlogn) compares.

The inorder traversal i®(n). The total cost i9(n log n) in both the best and average cases.

The worst case occurs if the input data is in order. In thie cag'’re essentially doing an insertion
sort, creating a tree with one long branch. This results nre@s$earch as bad égn?).

In the worst case, Heap Sort is better, since it automafikakps the tree balanced. In the average
case, Tree Sort is good — plus it has the side effect of bgldimordered structure that is useful
and interesting for other reasons.

Comparisons of advanced sorts

To recap what we know about our sorting routines.

e Quicksort is fastest on averagé{n log n), but has worst case behavior®{n?) when we
are unable to generate good partitions.

— Low overhead makes it perform well on average.
e HeapSort take®(n logn) in average and worst case.

— On random data, it is somewhat slower than Quicksort and &&ud.

— If you only need to retrieve the first few items of a collectrather than the entire set,
it can be better since the initial heapify can be done in tinie).

e MergeSort take®(nlogn) in average and worst cage(n) extra space.

— Onrandom data, it’s likely to be somewhat slower than Quidks
— It performs well on external files where all data will not fitarmemory.

e Tree Sort is(O(nlogn) on average, but i®(n?) in the worst case, and tak€xn) extra
space.

— It does well on random data.

— Has the side-effect of building an ordered structure whighen balanced, allows
O(logn) search capabilities.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

See Example:
/ home/ ¢cs501/ exanpl es/ Sorti ngConpari sons

Balanced Trees

@/ Q

Just having the same height on each child of the root is naigmto maintain & (log n) height
for a binary tree.

We can define &alance condition, some set of rules about how the subtrees of a node can differ.

Maintaining a perfectly strict balance (minimum heightfioe given number of nodes) is often too
expensive. Maintaining too loose a balance can destro@the; n) behaviors that often motivate
the use of tree structures in the first place.

For a strict balance, we could require that all levels extdeptowest are full.

How could we achieve this? Let’s think about it by insertihg values 1,2,3,4,5,6,7 into a BST
and seeing how we could maintain strict balance.

First, insert 1:

Next, insert 2:

We're OK there. But when we insert 3:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

we have violated our strict balance condition. Only one w#é these three values satisies the
condition:

2
[\
1 3

We will see how to “rotate” the tree to achieve this shortly.

Now, add 4:

2
/[\
1 3
\
4

Then add 5:

2
[\

Again, we need to fix the balance condition. Here, we can appyof these rotations on the right
subtree of the root:

2
[\
1 4
/\
3 5

Now, add 6:

[\

/\

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

It's not completely obvious how to fix this one up, and we wamdrry about it just now. We do

know

2
/
1

that after we insert the 7, there’s only one permisdiigle:

4
[\
6

\ [\

35 7

So maintaining strict balance can be very expensive. Tieeddgustments can be more expensive
than the benefits.

There are several options to deal with potentially unbadnicees without requiring a perfect

balance.
Two are discussed in detail in the text and have implememiatin the structure package. The
third is not.

1. Red-black trees — nodes are colored red or black, and place restrictons on wdtenodes

and black nodes can cluster.

See Structure Source:
/ home/ cs501/ src/ structure5/ RedBl ackTr ee. j ava

Red-black trees are described briefly in the text. We may dssthem later.

AVL Trees - Adelson-Velskii and Landis developed these in 1962. Weélaak at these.

. Slay trees— every reference to a node causes that node to be relocdtedrtmt of the tree.

See Structure Source:
/ home/ ¢s501/ src/ structureb/ Spl ayTree. j ava

This is very unusual! We havecant ai ns() operation that actually modifies the structure.

This works very well in cases where the same value or a smaligof values are likely to
be accessed repeatedly.

We may talk more later about splay trees as well.

AVL Trees

We considerAVL Trees, developed by and named for Adelson-Velskii and Landis, wikiented

them

in 1962.

Balance condition: the heights of the left and right subtadesy node can differ by at most 1.

To see that this is less strict than perfect balance, letisider two trees:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

This one satisfies the AVL condition (to decide this, we chiiagkheights at each node), but is not
perfectly balanced since we could store these 7 values geafrheight 2.

But...

This one does not satisfy the AVL condition — the root noddates it!

So the goal is to maintain the AVL balance condition each timeee is an insertion (we will ignore
deletions, but similar techniques apply).

When inserting into the tree, a ndoe in the tree can becomdatai@f the AVL condition. Four
cases can arise which characterize how the condition cafe vlated. Let’s call the violating
nodeA.

1. Insertion into the left subtree of the left child af

2. Insertion into the right subtree of the left child &f

3. Insertion into the left subtree of the right child 4f

4. Insertion into the right subtree of the right child.f

In reality, however, there are only two really differentesssince cases 1 and 4 and cases 2 and 3
are mirror images of each other and similar techniques apply

First, we consider a violation of case 1.

We start with a tree that satisfies AVL:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

level n-1

level n

After an insert, the subtre¥ increases in height by 1:

level n-1

level n

level n+1

So now nodé, violates the balance condition.
We want to perform aingle rotation to obtain an equivalent tree that satisfies AVL.

Essentially, we want to switch the rolesigfandk,, resulting in this tree:

(22
AN

level n

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

For this insertion type (left subtree of a left child — casgthis rotation has restored balance.

We can think of this like you have a handle for the subtree ertiot and gravity determines the
tree.

If we switch the handle from, to £; and let things fall where they want (in fact, must), we have
rebalanced.

Consider insertion of 3,2,1,4,5,6,7 into an originally eynpee.

Insert 3:

Insert 2:

Insert 1:

Here, we had to do a rotation. We essentially replaced thieafoie violating subtree with the
root of the taller of its children.

Now, we insert 4:

[\

Then insert 5:

2
[\
1 3 <-- AVL violated here (case 4)

10

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

and we have to rotate at 3:

[\

/\

Now insert 6:

2 <-- AVL violated here (case 4)
[\

/\

Here, our rotation moves 4 to the root and everything eldg ifatio place:

4
[\
2 5
[\ \
1 3 6

Finally, we insert 7:

4
[\
2 5 <-- AVL violated here (case 4 again)

11

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

/ \

[\ /\
1 35 7

We achieve perfect balance in this case, but this is not gtegd in general.

This example demonstrates the application of cases 1 and Apbcases 2 and 3.
Here’s case 2:

We start again with the good tree:

level n-1

level n

But now, our inserted item ends up in subtiée

level n-1
level n

level n+1

We can attempt a single rotation:

12

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

level n-1

level n

level n+1

This didn’t get us anywhere. We need to be able to breaK up

We know subtre@” is not empty, so let’s draw our tree as follows:

level n-1

@A

level n B C

level n+1

Here, only one ofB or C'is at leveln + 1, since it was a single insert below that resulted in the
AVL condition being violated aks with respect to its shorter chil®.

We are guaranteed to correct it by movibigdown a level and bot andC' up a level:

level n

13

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We're essentially rearranging, &, andk; to havek, at the root, and dropping in the subtrees in
the only locations where they can fit.

In reality, only one ofB andC' is at leveln — the other only descends to level- 1.
Case 3 is the mirror image of this.

To see examples of this, let’s pick up the previous examphachvhad constructed a perfectly-
balanced tree of the values 1-7.

/ \

[\ [\
1 35 7

At this point, we insert a 16, then a 15 to get:

Node 7 violates AVL and this happened because of an inserthetleft subtree of its right child.
Case 3.

So we letk; be 7,k, be 15, andi; be 16 and rearrange them to hawyeat the root of the subtree,
with childrenk, andks. Here, the subtreed, B, C, andD are all empty.

We get:
4
/ \
2 6
[\ [\
1 35 15
[\
7 16

Now insert 14.

14

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

4
/ \
2 6
[\ [\
1 35 15
[\
7 16
\
14

This violates AVL at node 6 (one child of height 0, one of h¢igh

This is again an instance of case 3: insertion into the |dftree of the right child of the violating
node.

So we letk; be 6,k be 7, andk; be 15 and rearrange them again. This time, subtreissthe 5,
B is empty,C'is the 14, and is the 16.

The double rotation requires that 7 become the root of thatree, the 6 and the 15 its children,
and the other subtrees fall into place:

What do we have here? Looking up from the insert location, tfs¢ élement that violates the
balance condition is the root, which has a difference of tetwieen its left and right child heights.

Since this is an insert into the right subtree of the rightdshive're dealing with case 4. This
requires just a single rotation, but one done all the wayeatdot. We get:

15

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

7
/ \
4 15
/ \ [\
2 6 14 16
[\ I

7
/ \
4 15
/ \ I\
2 6 14 16
[\ I

7
/ \
4 15
/ \ [\
2 6 13 16
[\ [\

1 3 5 12 14

Inserting 11:
7
/ \
4 15
/ \ [\
2 6 13 16
/\ [\

1 3 5 12 14

Here, we have a violation at 15, case 1, so another singlgawotidere, promoting 13:

16

CSC 501 Data Stuctures and Algorithm Analysis

7
/ \
4 13
/ \ [\
2 6 12 15
[\ I I\

(Almost done)

Insert 10:
E
/ \
4 13
/ \ [\
2 6 12 15
[\ [[\

The violator here is 12, case 1:

7
/ \
4 13
/ \ / \
2 6 11 15
[\ I\ [\

1 3 5 10 12 14 16

Then we finally add 8 (no rotations needed) then 9:

7
/ \
4 13
/ \ / \

2 6 11 15
/\ [\ [\
1 3 5 10 12 14 16
/

8
\
9

17

Fall 2013

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Finally we see case 2 and do a double rotation with 8, 9, and @@ttour final tree:

4
/ \
4 13
/ \ / \
2 6 11 15
/\ [\ [\
1 3 5 9 12 14 16
/\
8 10

This tree is not strictly balanced — we have a hole under gl child, but it does satify AVL.

You can think about how we might implement an AVL tree, but wi# mot consider an actual
implementation. However, AVL insert operations make ebecglexam questions, so keep that in
mind when preparing for the final.

The whole point of considering AVL trees is to maintain a mesle balance, and hopefully, a
tree height that looks likebg n. We will not do a detailed analysis, but the heighdf an AVL tree
is guaranteed to satisfy the inequality:

[logyn| < h < 1.44.05logy(n + 2) — 1.3277.

We have log factors on both sides, leading2tiog n) worst case behavior of search and insert
operations.

18

