Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2014

Program/Problem Set 3: Tokenizer for Little C
Due: 11:59 PM, Monday, September 22, 2014

For this assignment, you will be implementing a tokenizex,(lexical analyzer) in C for a lan-
guage callediC (little C). You will later be using this tokenizer as the firdge in a larger program
that will perform a full syntax analysis.€., parse) 4C program.

The tokenizer, and especially the parser to come, are goitglex programs. Even though the
guantity of code you will write is only on the order of a couplendred lines, it will take some

thought and planning. As such, you are encouraged to formpgrof 2 or 3 for this assignment
and the next.

You can find and run the executable for my solution code fargghogram omogul . st r ose. edu
in/ home/ cs433/ probset s/ t okeni zer/ .

ThelC Language

IC is a smaller, simpler version of the C programming langu&gperal familiar C features, such
as arrays and functions (other thami n) are not present itC, but sinceC is a proper subset of
C, anylC program should compile correctly with a C compiler.

We describe the language with BNF rules (taken fiémA Reference Manual, by Harbison and
Steele, Jr4" Edition, Tartan Inc., 1995, with revisions).

e [] denotes an optional part (there are[np brackets in this language)

e the top level (.e, root, or starting) production of the language® ogr an®

<add-op> ::= + | -

<additive-expression> ::= <nultiplicative-expression> [<add-op> <additive-expression>]
<assi gnment - expression> ::= | DENT = <conditional - expressi on>

<compound-statement> ::= { [<declaration-list>] [<statement-list>] }

<condi ti onal - expression> ::= <|ogical -or-expressi on>

<conditional -statement> ::= if (<conditional-expression>) <statement> [else <statenent>]
<constant> ::= INT_LIT | FLOAT_LIT

<decl aration> ::= <type-specifier> <initialized-declarator-list> ;

<decl aration-list> ::= <declaration> [<declaration-list>]

CSC 433 Programming Languages Fall 2014

<equality-op> ::===| I=

<equal i ty-expression> ::= <rel ati onal -expression> [<equality-op> <equality-expression>]
<expressi on-statenment> ::= <assi gnment - expr essi on>

<fl oating-type-specifier> ::= float

<for-statement> ::= for <for-expressions> <statenment>

<for-expressions> ::= (<assignnent-expression> ; <conditional-expression> ; <assignnent-expression>)
<initialized-declarator-list> ::= IDENT [, <initialized-declarator-list>]
<integer-type-specifier> ::=int

<iterative-statement> ::= <while-statenment> | <for-statenment>

<l ogi cal - and- expression> ::= <equal ity-expression> [&& <l ogi cal - and- expressi on>]

<l ogi cal -or-expressi on> ::= <l ogi cal -and-expression> [|| <l ogical-or-expression>]

<mul tiplicative-expression> ::= <primary-expression> [<mult-op> <nmultiplicative-expression>]
<mult-op> ::=* | [| %

<nul | -statenment> ::=
<par ent hesi zed- expression> ::= (<condi ti onal - expression>)

<prinmary-expression> ::= | DENT | <constant>
| <parent hesi zed- expr essi on>

<progran® ::= void main () <conpound-statenent>

<rel ational -expression> ::= <additive-expression> [<relational-op> <rel ational - expression>]
<relational-op> ::= < | <=| > | >=

<statenent> ::= <expression-statenment> | <conpound-statenent>

| <conditional-statenent> | <iterative-statenent>
| <null-statenment>

<statenent-list> ::= <statenment> [<statenment-list>]
<type-specifier> ::= <floating-type-specifier> | <integer-type-specifier>
<whi | e-statenent> ::= while (<conditional -expression>) <statenent>

In the above, you will identify several types of operatord ather punctuation, as well as several
keywords. Your tokenizer should match each of these withiguentoken.

There are three token types which can match a variety of lesenDENT, | NT_LI T, andFLOAT _-

LI T. An | DENT is a lexeme that begins with a letter or underscore, andls#ed by O or more
letters, numbers, and underscores. IAT_LI T consists exclusively of a sequence of numbers.
A FLOAT_LI T consists of a sequence of 0 or more digits, followed by a dalcpuint, followed

by a sequence of 0 or more digits, with the restriction thatgimust be at least one digit before
or after the decimal point. Note that we specifically disalleegativel NT_LI T andFLOAT_LI T
values.

Tokenizer Requirements

CSC 433 Programming Languages Fall 2014

Your tasks are

1. Write a C progrant okeni zer . ¢ that takes as its input a single command-line parameter,
the name of a file that containsl@ program. It should follow the model of the “front”
example from the text and in class in how it scans the inpuld®lexemes, and prints out
the tokens and lexemes it finds.

2. Develop at least 3 nontrividC example programs. These programs should compile with
your favorite C compiler and should, as a group, test all eftttken types needed by the
grammar folC, and all major forms of the tokens whose lexemes VARBENT, | NT_LI T,
FLOAT.LIT).

If you use the “front” example as a guide (or better yet as distppoint), you will find that you
need to introduce several new token types and extend éixefunction significantly. You will
also need to add a capability to differentiate between ifierg and keywords and tHeookup
function will need to be expanded to handle multi-charagparators.

It does not matter which specific token codes you assign tertdaikpes. Just don’t reuse any.
However, you may find it useful to group them as is done in tmerff’ example, where token
codes that start with 1 are for one category, start with 2@regperators and punctuation. Perhaps
a separate code grouping for keywords would be appropriate.

Remember that your tokenizer need not be concerned with whatkequence of tokens is valid
IC code, just whether the tokens themselves are valid and Wweyagtre. For example, if your input
consist of

if } (++ 23.4 while float ;;;;
this would be perfectly fine with the tokenizer. The parselt wertainly not be happy, though

(when we get to that part).

A slow and steady approach will be essential here. You wiihitely need to ask questions. You
will definitely need to discuss your approach with your par(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements

Your code should be commented appropriately throughoetdel also include a longer comment
at the top of your program describing your implementationdfof course, it should include your
name(s).

Your program should compile without warnings usiggc on mogul when the Wl | flag is
included. This flag turns on extra warnings that will help yauoid some of the pitfalls of C
programming. If you encounter any warnings that you dondwimow to fix, ask!

Include avakef i | e that compiles the program with theMal | flag. ThisMakef i | e should
produce an executable program caliekeni zer . My Makef i | eisonnogul . strose. edu
in/ home/ cs433/ probset s/t okeni zer/ . Please feel free to use or modify as you see fit.

3

CSC 433 Programming Languages

Fall 2014

Bonus Opportunities

You can earn up to 6 points of bonus credit for handling thiefghg (1 point each):

e negativel NT_LI T values

negativeFLOAT LI T values

octall NT_LI T values

hexadecimal NT_LI T values

e notationl NT_LI T values

e notationFLOAT_LI T values

Submission

Before 11:59 PM, Monday, September 22, 2014, submit your fargrading. Create and submit
a single archive file (a7z or. zi p file containing all required files) using Submission Box at

http://sb. teresco. or g under assignment “PS3".

Grading

This assignment will be graded out of 50 points.

| Problem

| Value | Score|

New character classes and token codes

3

Match new one-character operators and punctuation

Match multi-character operators

Match integer literals

Match floating point literals

Match keywords as appropriate tokens

Report correct lexemes

Command-line parameter for file name

Appropriate output format

Program documentation

Program efficiency, style, and elegance

Working Makefil e

3 valid exampldC programs

Programs cover all token types

WWERWANPRP PO W WO O

Programs cover all major cases fdbENT, | NT_LI T, FLOAT LI T

w

Bonus opportunity

upto6

| Total

