
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Program/Problem Set 6: Backtracking
Due: 11:59 PM, Wednesday, October 15, 2014

In this second part of your Scheme programming tasks, you will implement a backtracking algo-
rithm to find solutions to the billiard ball problem.

You may work alone or in a group of 2 or 3 on this assignment.

The Problem

Thebilliard ball problem consists of arranging a triangle of numbered billiard ballssuch that the
resulting layout has the following arithmetic property: every ball below the top level is the absolute
value of the difference between two balls immediately aboveit. For instance, the following is a
solution to the problem when the top row consists of three balls (which requires a total of six balls).

2

3

5

4

6

1

Note that the balls are numbered from 1 to 6 in this case.

For the problems with four and five balls in the top row, there are a total of 10 and 15 balls,
respectively.

Read more about the problem in Martin Gardner’sPenrose Tiles to Trapdoor Ciphers: And the
Return of Dr Matrix (Cambridge Press 1997) on pages 119-120. (http://books.google.
com/books?id=8-FlYl6-ML8C&lpg=PP1&pg=PA119#v=onepage&q&f=false)

As far as I can tell, there are no known solutions for problemslarger than five balls in the top row.

A Backtracking Approach

A backtracking algorithm, similar to the one we saw that solved the N-Queens problem in class, is
one approach to solving this problem.

The idea is that we attempt to build up a candidate solution byadding balls to the top row. Each
time a ball is added, we make sure we have not broken any of the rules (in this case, there is just



CSC 433 Programming Languages Fall 2014

one: there are no repeated numbers in the triangle generatedby that top row). If we have not yet
broken a rule, we either have found a solution (if the top row now contains the desired number
of balls) or we have a partial candidate solution and we should add another ball. Any time we
generate a candidate solution that does violate the rule, wehave hit a dead end, so we undo the
most recent addition and try the next option. If we ever backtrack all the way to the beginning and
have run out of options for our first move, we know no solution exists.

For example, consider a backtracking solution to the problem where there are 2 balls in the top
row, and we choose numbers from the largest to the smallest each time we reach a decision point.
(Note that this is a good strategy to get a solution more quickly, as larger numbers will tend to be
in the top row.)

We start with an empty solution, and we are ready to add the first ball to the top row. Since we are
trying numbers from the largest to smallest, we start with 3:

(3)

This is a legal configuration: there are no repeated digits when we expand this out (in fact, there is
no expansion needed for a single ball). So we accept this as a partial solution and move on, trying
to add a ball to the second position. The first ball we attempt to place at this position is the highest
numbered, 3:

(3 3)

which expands to

(3 3)
(0)

This is not a legal configuration: it includes two 3’s. So we backtrack and erase our last move, and
instead try the next option, which is to use the 2 ball:

(3 2)

which expands to

(3 2)
(1)

This is a legal solution: no repeats. Plus, we now have filled the top row, so our solution is
complete.

2



CSC 433 Programming Languages Fall 2014

Question 1:
Show the steps in a backtracking solution to the problem withtwo balls in the top row if we
instead chose balls for each position in increasing insteadof decreasing numerical order. (4
points)

Now, let’s consider the start of the procedure for the much more interesting (and much longer)
backtracking computation of a solution to the problem with three balls in the top row. Note that
here, we have a total of six balls.

Our first move is to place the largest number into the top row.

(6)

This is again legal, so we continue by adding a second number.

(6 6)

This contains a duplicate, so we backtrack and try a 5 in the second position.

(6 5)
(1)

This is legal, so we accept the 5 for now, and start working on the third ball. We begin, as before,
with the highest numbered ball and work our way down if we encounter illegal moves.

(6 5 6)
(1 1)
(0)

This has duplicates, so it is not legal. In fact, all of our choices for the third ball will result in illegal
configurations here:

(6 5 6)
(1 1)
(0)

(6 5 5)
(1 0)
(1)

(6 5 4)
(1 1)
(0)

3



CSC 433 Programming Languages Fall 2014

(6 5 3)
(1 2)
(1)

(6 5 2)
(1 3)
(2)

(6 5 1)
(1 4)
(3)

So this means 5 in the second position of the top row was a dead end. And we backtrack, and try a
4 there instead:

(6 4)
(2)

So far so good here, so we move on trying each ball in the 3rd position of the top row...

Question 2:
Complete the hand trace to the solution that will result from the above procedure. Note that
this will not lead to the sample solution pictured at the top of the page. (6 points)

Implementing in Scheme

Your program should use a similar approach to our N-Queens backtracking example from class.
Your “startup” function should take just one parameter: thenumber of balls to be placed in the top
row. It will then call another function with additional parameters needed to manage the backtrack-
ing and to compute and return a solution (if one exists for thegiven input).

If a solution exists, the function should return the list of numbers of the balls in the top row. It can
return#f otherwise. This list, as it is being built up is a good choice to use as thestate of the
algorithm.

After each time a ball is added to the state, the following possibilities could occur:

• The new state is illegal: the top row and the rows beneath thatwould be required for that top
row to exist contains a duplicate ball. If so, backtrack out of this move.

• The new state is legal and the desired number of balls are now in the top row. In this case,
we have a solution and are very happy.

• The new state is legal but more balls are needed in the top row.In this case, trying to add
another ball, starting with the highest-numbered ball for the problem size.

4



CSC 433 Programming Languages Fall 2014

You will very likely want a number of additional functions that help your main recursive function
to do its work. For example, you might want a function that checks that all elements of a given list
are unique (no duplicates).

Tips and Tricks

• When your program doesn’t work, it can be difficuly to track down just what’s wrong. Al-
ways suspect your helper functions and test them thoroughlyon their own. For example,
if you have function to check if there are no repeated elements in a list, make sure that’s
working before you rely on it as part of the solution for the larger problem.

• Additional items may be added here as questions come in as everyone works on this assign-
ment.

Trying it Out

Question 3:
Run your program for 1, 2, 3, 4, 5, and 6 balls in the top row, and give both the answer you
obtain and the amount of time it took to compute. (3 points)

Note that the functionruntime reports the CPU time used by Scheme since it started. So if you
start up Scheme, run your program for a given problem size, then callruntime, you will get a
reasonable approximation of the time it takes.

Submission

Before 11:59 PM, Wednesday, October 15, 2014, submit your work for grading. Create and submit
a single archive file (a.7z or .zip file containing all required files) using Submission Box at
http://sb.teresco.org under assignment “PS6”.

Grading

This assignment will be graded out of 50 points.

Feature Value Score

Hand trace for 2 balls in top row 4
Hand trace completion for 3 balls in top row 6
Program correctness 30
Program documentation 5
Program style and formatting 2
Computed solutions and run times 3

Total 50

5


