
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Topic Notes: Subprograms

Our next familiar programming language construct to examine in more detail is thesubprogram.
Whether called subroutines, procedures, functions, or methods, many of the fundamentals are the
same.

We typically categorize subprograms into these groups:

• proceduresor subroutinesthat do not return a value

• functionsthat return a single value

• methodsare associated with an object (see Chapters 11-12, which we will likely only touch
on briefly)

Even in early programming languages, the use of subprogramswas emphasized to promote

• code reusability

• modularity – a high-level problem decomposition

• resource efficiency

– memory space for code

– reduce programming time

The general behavior of subprograms is well known to us as programmers:

• a subprogram has a single entry point (the beginning)

• the caller’s execution stops while the subprogram executes

• control returns to the caller upon completion

And the basic terminology:

• subprogramdefinition– the declaration and implementation of a subprogram

• subprogramcall – the explicit activation statement of a subprogram

CSC 433 Programming Languages Fall 2014

• subprogramheader– the first part of the definition

– sometimes called aspecificationor interface

– specifiestypeof subprogram, itsname, and itsparameters(if any)

• subprogrambody– statements which implement the subprogram

• subprogramparameter profileor signature– the number, order and types of the subpro-
gram’s formal parameters

• subprogramprotocol– a subprogram’s parameter profile plus its return type

• subprogramdeclaration– a mini “pre-definition”, stating protocol information (e.g., C/C++
Prototypes)

• formal parameter– name listed in the subprogram header and used in the subprogram like a
local variable

• actual parameter– a value or address used in the subprogram call statement

How do actual parameters get matched to the appropriate formal parameters on a subprogram call?

We are likely most familiar withpositional parameters– the mapping of actual to formal parame-
ters is based on the order in the parameter list:

int sub(int x, int y) {

return x - y;
}

...

sub(5, 2);

Here, we all know thatx is assigned5 andy is assigned2 on the example function call.

You may or may not have seen examples of languages that usekeyword parameters, where the
actual parameters are explicitly matched to formal parameters by name.

This means parameters can be listed in any order, avoiding transposition errors. However, it re-
quires that callers must know the formal parameter names.

Ada (of course) is one of the languages that supports this. The text shows an example from Python.

Fortran 90 does this as well:

On the web: F90 Keyword arguments and default arguments at
https://www.nsc.liu.se/˜boein/f77to90/c8.html

2

CSC 433 Programming Languages Fall 2014

The above also shows how Fortran 90 deals withdefault parameters. In these cases, a parameter
can be left off and given a default value when it is not specified.

C++ supports this, but since its parameters are specified onlypositionally, any optional parameters
must come at the end of the parameter list.

See Example:
/home/cs433/examples/cppdefault

Many languages also support variable-length argument lists (variadic functions). We know that C
must support this if functions likeprintf could work, since it can take any number of parameters,
depending on the number of specifiers in the format string.

But how does it do it?

See Example:
/home/cs433/examples/varargs/varargs.c

For examples in many languages:

On the web: Wikipedia article “Variadic function” at
http://en.wikipedia.org/wiki/Variadic function

Java’s mechanism:

See Example:
/home/cs433/examples/varargs/Varargs.java

Perl passes all parameters to subprograms in a special “parameter array” called@_.

On the web: Using the Parameter Array at
http://www.cs.cf.ac.uk/Dave/PERL/node50.html

Models of Parameter Passing
The text discusses many design issues for subprograms, but we will focus on just a few.

The first is the semantics of parameter passing. That is, whenwe have a subprogram, how does
information pass through the parameters between the callerand the callee?

There are three major models:

• in mode– information flows through the parameter from caller to callee

• out mode– information flows through the parameter from the callee back to the caller

• inout mode– information flows through the parameter from the caller to the callee, then back
from the callee to the caller

General Semantics

3

CSC 433 Programming Languages Fall 2014

In most cases, parameter passing occurs through a run-time stack.

A subroutine call generally involves:

• setting up and initializing memory for parameters

• stack-dynamic allocation of local variables

• saving of the execution status of calling program

• transfer of control and arrange for the return

and on return:

• in mode and inout mode parameters must have their values returned

• deallocation of stack-dynamic local variables

• restoration of execution status

• return of control to the caller

Thesubprogram linkage, which is the entire call and return process, most often depends upon an
activation recordplaced on the program’s run-time call stack.

An activation record for simple subprograms consists of three parts:

• space for local variables

• space for parameters

• the return address

If we have support for stack dynamic local variables (which is the case for the modern languages
that support recursion), we also need a register which will hold a base address (often called aframe
pointer). The frame pointer is the base to which the offsets of all local variables and parameters
are added to compute their actual address.

In these cases, adynamic link address, which points to the start of the activation record of the
caller, is part of the activation record so it can be restoredon return.

We will look later at more details of how this works.

These are accomplished using a number of methods for parameter passing.

Call by Value

4

CSC 433 Programming Languages Fall 2014

With call by value, the formal parameter is initialized by actual parameter. No changes to the
formal parameter in the subprogram should propagate back tothe actual parameter in the caller.

It is normally implemented by copying, but can be done by providing a write-protectedaccess path
to the actual parameter.

• With copying, write protection of the actual parameter is easy – the subprogram has no
access to it

• However, copying requires extra space, as there are now 2 copies, and extra time, as the copy
must be performed

• With an access path, there is the expense of enforcing write protection and access is slower
through indirect references

This is the parameter passing method of choice for most modern languages, including C/C++, C#,
Java, Pascal, Ruby, Scheme.

Call by Reference

With call by reference, the formal parameter is a reference to the memory location of the actual
parameter.

This is used in Pascal (with thevar keyword) and C++ with the& operator.

See Example:
/home/cs433/examples/callbyref/callbyref.cpp

This is efficient, eliminating the copy and extra storage needed for call by value, but access is
slower because of the indirection.

It also introduces potential side effects and aliases.

C appears to have a call by reference, but it is really a call byvalue where the values are pointers.

See Example:
/home/cs433/examples/callbyref/cpointers.c

All object parameters in Java are passed by reference.

Call by Result

With call by result, no information is initially transmitted to the subprogramthrough the parameter.
The formal parameter acts like a local variable in the subprogram, then its final value is sent back
to the actual parameter (by copying).

A few problems that can arise:

• If we have

5

CSC 433 Programming Languages Fall 2014

f(x, x);

which formal parameter from insidef will be copied back tox last?

• If we have

f(a[i], i);

do we use the originali to find the appropriate array entry to copy back to, or the potentially-
modifiedi ?

Both C# and Ada provide call by result by specifying theout keyword to a parameter.

Call by Value-Result

A parameter passed byvalue-result is a combination of call by value in that the formal
parameter is initialized using the actual parameter’s value, and call by result in that the formal
parameter’s final value is copied back to the actual parameter at the end of the subprogram.

This differs from call by reference in that the formal parameters have local storage during the
execution of the subprogram.

Ada supports this by using both thein andout keywords.

Call by Name

With call by nameparameters, parameters are passed by a textual substitution. However, it is
difficult to implement and is not used by any major language.

The idea is sometimes used at compile time, for example in C, wecan use the#define mecha-
nism to define macros that act like call by name.

#define SAFE_MALLOC(v,type,size) \
{ v = (type) malloc(size) ; \

if (v == NULL) { \
fflush(stdout); \
fprintf(stderr,"in file %s, line %d, failed to allocate %ld bytes",\

__FILE__,__LINE__,size); \
exit(1); \

} \
}

ALGOL 60 did implement call by name. This allowed for a programming technique called
Jensen’s Device.

6

CSC 433 Programming Languages Fall 2014

On the web: Wikipedia article “Jensen’s Device” at
http://en.wikipedia.org/wiki/Jensen’s device

We can use the C preprocessor to implement this idea:

See Example:
/home/cs433/examples/jensens

Implementing Parameter-Passing
In most languages parameter communication takes place through the run-time stack.

Pass-by-reference are the simplest to implement; only an address is placed in the stack.

Overloaded Subprograms
An overloaded subprogramis one that has the same name as another subprogram in the same
referencing environment.

This is included in languages including Ada, Java, C++, and C#.The resolution of which should
be used for a specific call is based on which definition’s protocol matches the call.

See Example:
/home/cs433/examples/overload

Indirect Subprogram Calls
Sometimes, we do not know until runtime which subprogram will need to be called for a particular
run of a program.

In C and C++, this is accomplished throughfunction pointers. Examples where this is used include

• callback functions, which are functions passed as parameters to a function thatare to be

7

CSC 433 Programming Languages Fall 2014

called by that function to perform part of their task

On the web: “Callback” on Wikipedia at
http://en.wikipedia.org/wiki/Callback (computer programming)

See Example:
/home/cs433/examples/qsort examples

• the function to call upon creation of a new thread (as in POSIXthreads)

See Example:
/home/cs433/examples/pthreadhello

Generic Subprograms
A genericor polymorphic subprogramtakes parameters of different types on different activations.

We saw exampels of overloaded subprograms, which providead hoc polymorphism.

With subtype polymorphism, a parameter of typeT can access any object of typeT or any type
derived fromT (in object-oriented programming languages).

We will primarily considerparametric polymorphism, where a subprogram can take atype param-
eter.

The text described generic subprograms in C++, which uses thetemplate keyword:

template <class Type>
Type max(Type first, Type second) {

return first > second ? first : second;
}

The functionmax can then be called with any datatype for its parameters, and it will return the
appropriate type. We can try it:

See Example:
/home/cs433/examples/cppgeneric

Notice that in C++, theType can be either a primitive type or a class.

In Java, where generic have been supported since version 5.0, type parameters must be classes.
With autoboxingandautounboxing, where needed conversions are automatically made between
the primitive types (e.g., int , double , etc.) and theirObject containers (e.g., Integer ,
Double , etc.), this is less of a restriction than it may at first seem.

Some examples:

See Example:
/home/cs433/examples/javageneric

8

CSC 433 Programming Languages Fall 2014

This example also includes generic classes in addition to generic methods. Worth a look now, even
though it’s not part of the subprogram topic.

Overloaded Operators
Operators are overloaded in many languages – an example you know well is the+ operator being
used for addition and string concatenation in Java. Some languages allow user-defined functions
to define new overloads for operators. For example, the C++ program below includes several
overloaded operators.

See Example:
/home/cs433/examples/opoverload

Coroutines
One final topic of interest from Chapter 9 of Sebesta concernscoroutines. These are somewhat
like traditional subroutines, as they call each other, and return, but the caller and called coroutines
are on a more equal footing, they havesymmetric control.

The idea is that when a coroutine returns to its caller, it retains its state information and resumes
after the last statement executed in the previous execution, forming a sort of “quasi-concurrency”
possibility. As control is transferred back and forth (using a resumeoperation in place of a tradi-
tional subroutine call) between coroutines, the result is an interleaving (but not true concurrency,
where executions would overlap).

A few graphics demonstrating this can be found in the text’s Figure 9.3, p. 434.

More on Subroutine Implementation
Chapter 10 describes implementation issues arising with subroutines, and we will touch on a few
of those.

We discussed earlier the general semantics of subroutine calls and returns – passing parameters,
allocating local variables, transfer of control, and deallocation.

For what Sebesta calls “simple” subprograms, no real call stack is needed: the information for all
subroutines, both code and data, is available at all times inthe activation record instance.

However, such simple subprograms have significant limitations, notably that they do not support
recursion. Since there is only one copy of the parameters, local variables, and return address
for each subroutine, if more than one copy of any subroutine is “active” at the same time, later
invocations will overwrite data from earlier invocations.

The text shows an example of how a language such as C supports recursion using stack dynamic
variable allocation. The introduction of adynamic linkallows management of multiple instances
of the activation records for each subroutine to exist on thestack.

9

CSC 433 Programming Languages Fall 2014

Many of the specifics come down to the architecture to which the language is being compiled.
Local variables might be allocated to registers and only saved to the stack when necessary because
of a subsequent subroutine call. For example, consider thiscode using the MIPS ISA:

See Example:
/home/cs433/examples/mips-factorial

And a greatest common denominator function in Motorola 68000 assembler:

See Example:
/home/cs433/examples/m68k-gcd

Finally, we can see how the gcc x86 compiler performs function calls by running gcc with the-S
option to generate a.s file.

See Example:
/home/cs433/examples/gcd

10

