Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2014

Topic Notes: Subprograms

Our next familiar programming language construct to exammnmore detail is thsubprogram
Whether called subroutines, procedures, functions, or @asthmany of the fundamentals are the
same.

We typically categorize subprograms into these groups:

e procedure®r subroutineghat do not return a value

e functionsthat return a single value

e methodsare associated with an object (see Chapters 11-12, which Mgkely only touch
on briefly)

Even in early programming languages, the use of subprogname®mphasized to promote

e code reusability
e modularity — a high-level problem decomposition

e resource efficiency

— memory space for code
— reduce programming time

The general behavior of subprograms is well known to us agraromers:

e a subprogram has a single entry point (the beginning)
o the caller’s execution stops while the subprogram executes

e control returns to the caller upon completion
And the basic terminology:

e subprograndefinition— the declaration and implementation of a subprogram

e subprograntall — the explicit activation statement of a subprogram

CSC 433 Programming Languages Fall 2014

e subprogranheader- the first part of the definition

— sometimes called specificatioror interface
— specifiegypeof subprogram, iteame and itsparametergif any)

e subprogranbody— statements which implement the subprogram

e subprogranparameter profileor signature— the number, order and types of the subpro-
gram’s formal parameters

e subprogranprotocol— a subprogram’s parameter profile plus its return type

e subprograndeclaration— a mini “pre-definition”, stating protocol informatioe.g, C/C++
Prototypes)

e formal parameter name listed in the subprogram header and used in the subprdige a
local variable

e actual parameter a value or address used in the subprogram call statement

How do actual parameters get matched to the appropriateafqanameters on a subprogram call?

We are likely most familiar wittpositional parameters the mapping of actual to formal parame-
ters is based on the order in the parameter list:

int sub(int x, int y) {

return x - y;

}

sub(5, 2);

Here, we all know thax is assigned andy is assigne@ on the example function call.

You may or may not have seen examples of languages thdtayseord parametersvhere the
actual parameters are explicitly matched to formal pararadty name.

This means parameters can be listed in any order, avoidamgposition errors. However, it re-
quires that callers must know the formal parameter names.

Ada (of course) is one of the languages that supports this t&tt shows an example from Python.
Fortran 90 does this as well:

On the web: F90 Keyword arguments and default arguments at
https://www.nsc.liu.se/"boein/f77t090/c8.html

CSC 433 Programming Languages Fall 2014

The above also shows how Fortran 90 deals w#Fault parametersin these cases, a parameter
can be left off and given a default value when it is not spetifie

C++ supports this, but since its parameters are specifiedoasiyionally, any optional parameters
must come at the end of the parameter list.

See Example:
/home/cs433/examples/cppdefault

Many languages also support variable-length argumest(iatriadic functiony. We know that C
must support this if functions likerintf could work, since it can take any number of parameters,
depending on the number of specifiers in the format string.

But how does it do it?

See Example:
/home/cs433/examples/varargs/varargs.c

For examples in many languages:

On the web: Wikipedia article “Variadic function” at
http://en.wikipedia.org/wiki/Variadic _function

Java’s mechanism:

See Example:
/home/cs433/examples/varargs/Varargs.java

Perl passes all parameters to subprograms in a speciahiptenarray” called@ .

On the web: Using the Parameter Array at
http://www.cs.cf.ac.uk/Dave/PERL/node50.html

Models of Parameter Passing
The text discusses many design issues for subprograms gbwrtllocus on just a few.

The first is the semantics of parameter passing. That is, wigehave a subprogram, how does
information pass through the parameters between the ealtethe callee?

There are three major models:

¢ in mode- information flows through the parameter from caller toexll
e out mode- information flows through the parameter from the callekliad¢he caller

e inout mode- information flows through the parameter from the callehtodallee, then back
from the callee to the caller

General Semantics

CSC 433 Programming Languages Fall 2014

In most cases, parameter passing occurs through a run-tcie s

A subroutine call generally involves:

e setting up and initializing memory for parameters
e stack-dynamic allocation of local variables
e saving of the execution status of calling program

e transfer of control and arrange for the return
and on return:

¢ in mode and inout mode parameters must have their valuasieetu
¢ deallocation of stack-dynamic local variables
e restoration of execution status

e return of control to the caller

The subprogram linkagewhich is the entire call and return process, most often @pepon an
activation recordplaced on the program’s run-time call stack.

An activation record for simple subprograms consists @dtparts:

e space for local variables
e space for parameters

e the return address

If we have support for stack dynamic local variables (whikhie case for the modern languages
that support recursion), we also need a register which witl b base address (often callefiiaane
pointer). The frame pointer is the base to which the offsets of alilla@ariables and parameters
are added to compute their actual address.

In these cases, dynamic link addresswhich points to the start of the activation record of the
caller, is part of the activation record so it can be restamrdeturn.

We will look later at more details of how this works.

These are accomplished using a number of methods for paapasing.

Call by Value

CSC 433 Programming Languages Fall 2014

With call by value the formal parameter is initialized by actual parametea ddanges to the
formal parameter in the subprogram should propagate batletactual parameter in the caller.

It is normally implemented by copying, but can be done by ftiog a write-protectedccess path
to the actual parameter.

e With copying, write protection of the actual parameter isyea the subprogram has no
accessto it

e However, copying requires extra space, as there are nowies;@nd extra time, as the copy
must be performed

¢ With an access path, there is the expense of enforcing wietegtion and access is slower
through indirect references

This is the parameter passing method of choice for most mddaguages, including C/C++, C#,
Java, Pascal, Ruby, Scheme.

Call by Reference

With call by referencethe formal parameter is a reference to the memory locatigheoactual
parameter.

This is used in Pascal (with thear keyword) and C++ with th& operator.

See Example:
/home/cs433/examples/callbyref/callbyref.cpp

This is efficient, eliminating the copy and extra storagedeeefor call by value, but access is
slower because of the indirection.

It also introduces potential side effects and aliases.
C appears to have a call by reference, but it is really a calidye where the values are pointers.

See Example:
/home/cs433/examples/callbyref/cpointers.c

All object parameters in Java are passed by reference.

Call by Result

With call by result no information is initially transmitted to the subprogrémough the parameter.
The formal parameter acts like a local variable in the sufpom, then its final value is sent back
to the actual parameter (by copying).

A few problems that can arise:

e If we have

CSC 433 Programming Languages Fall 2014

f(x, X);

which formal parameter from insidewill be copied back tx last?

e If we have

f(@fil, i);

do we use the original to find the appropriate array entry to copy back to, or thenatty-
modifiedi ?

Both C# and Ada provide call by result by specifying the keyword to a parameter.

Call by Value-Result

A parameter passed byalue-result is a combination of call by value in that the formal
parameter is initialized using the actual parameter'sejaiind call by result in that the formal
parameter’s final value is copied back to the actual paramaetbe end of the subprogram.

This differs from call by reference in that the formal paraenge have local storage during the
execution of the subprogram.

Ada supports this by using both tire andout keywords.

Call by Name

With call by nameparameters, parameters are passed by a textual substitiiowever, it is
difficult to implement and is not used by any major language.

The idea is sometimes used at compile time, for example in Gameuse thétdefine mecha-
nism to define macros that act like call by name.

#define SAFE_MALLOC(v,type,size) \
{ v = (type) malloc(size) ; \
if (v ==NULL) {\
fflush(stdout); \
fprintf(stderr,"in file %s, line %d, failed to allocate %Ild bytes"\
__FILE__, LINE__size); \
exit(1); \
J

ALGOL 60 did implement call by name. This allowed for a pragraing technique called
Jensen’s Device

CSC 433 Programming Languages Fall 2014

On the web: Wikipedia article “Jensen’s Device” at
http://en.wikipedia.org/wiki/Jensen’s _device

We can use the C preprocessor to implement this idea:

See Example:
/home/cs433/examples/jensens

Implementing Parameter-Passing

In most languages parameter communication takes placeghre run-time stack.

main Stack function sub
--------- At start b
w . Valueofa |<------ - Ref.toa
X A—o Value of b [e Assign to b
[=i At start
y At end Valueofc [€7 77~ = Ref.toc
° e Assign to ¢
_________ Address (at start) > Code
z N~ T77 >| Address (d) @ {< - - - - - | - Ref.tod
Code
Z

Pass-by-reference are the simplest to implement; only dread is placed in the stack.

Overloaded Subprograms

An overloaded subprograns one that has the same name as another subprogram in the same
referencing environment.

This is included in languages including Ada, Java, C++, and ¥ resolution of which should
be used for a specific call is based on which definition’s prottanatches the call.

See Example:
/home/cs433/examples/overload

Indirect Subprogram Calls

Sometimes, we do not know until runtime which subprogranhiaéd to be called for a particular
run of a program.

In C and C++, this is accomplished throufgimction pointersExamples where this is used include

e callback functionswhich are functions passed as parameters to a functioratkatio be

7

CSC 433 Programming Languages Fall 2014

called by that function to perform part of their task

On the web: “Callback” on Wikipedia at
http://en.wikipedia.org/wiki/Callback _(computer _programming)

See Example:
/home/cs433/examples/qsort _examples
¢ the function to call upon creation of a new thread (as in POBI¥ads)

See Example:
/home/cs433/examples/pthreadhello

Generic Subprograms
A genericor polymorphic subprogrartakes parameters of different types on different activetio
We saw exampels of overloaded subprograms, which pradd®c polymorphism

With subtype polymorphispa parameter of typ& can access any object of tyfieor any type
derived fromT (in object-oriented programming languages).

We will primarily considemparametric polymorphisgrwhere a subprogram can takéype param-
eter.

The text described generic subprograms in C++, which usasthglate keyword:

template <class Type>
Type max(Type first, Type second) {
return first > second ? first : second,;

}

The functionmax can then be called with any datatype for its parameters, tandl ireturn the
appropriate type. We can try it:

See Example:
/home/cs433/examples/cppgeneric

Notice that in C++, th@ype can be either a primitive type or a class.

In Java, where generic have been supported since versiotypéparameters must be classes.
With autoboxingand autounboxingwhere needed conversions are automatically made between
the primitive types €.g, int , double , etc) and theirObject containers €.g, Integer
Double , etc), this is less of a restriction than it may at first seem.

Some examples:

See Example:
/home/cs433/examples/javageneric

CSC 433 Programming Languages Fall 2014

This example also includes generic classes in additionrergemethods. Worth a look now, even
though it's not part of the subprogram topic.

Overloaded Operators

Operators are overloaded in many languages — an examplengoukell is the+ operator being
used for addition and string concatenation in Java. Songubkges allow user-defined functions
to define new overloads for operators. For example, the C+grano below includes several
overloaded operators

See Example:
/home/cs433/examples/opoverload

Coroutines

One final topic of interest from Chapter 9 of Sebesta conceonsutines These are somewhat
like traditional subroutines, as they call each other, atdrn, but the caller and called coroutines
are on a more equal footing, they hasanmetric control

The idea is that when a coroutine returns to its caller, dinstits state information and resumes
after the last statement executed in the previous executioming a sort of “quasi-concurrency”
possibility. As control is transferred back and forth (gsaresumeoperation in place of a tradi-
tional subroutine call) between coroutines, the resulhignéerleaving (but not true concurrency,
where executions would overlap).

A few graphics demonstrating this can be found in the texgsife 9.3, p. 434.

More on Subroutine Implementation

Chapter 10 describes implementation issues arising wittostibes, and we will touch on a few
of those.

We discussed earlier the general semantics of subroutitsearal returns — passing parameters,
allocating local variables, transfer of control, and deedkion.

For what Sebesta calls “simple” subprograms, no real catksis needed: the information for all
subroutines, both code and data, is available at all tim#seictivation record instance.

However, such simple subprograms have significant linoitesti notably that they do not support
recursion. Since there is only one copy of the parametecs)| hariables, and return address
for each subroutine, if more than one copy of any subrousin@active” at the same time, later

invocations will overwrite data from earlier invocations.

The text shows an example of how a language such as C supeoutsion using stack dynamic
variable allocation. The introduction ofdynamic linkallows management of multiple instances
of the activation records for each subroutine to exist orsthek.

CSC 433 Programming Languages Fall 2014

Many of the specifics come down to the architecture to whiehlimguage is being compiled.
Local variables might be allocated to registers and onlgdaw the stack when necessary because
of a subsequent subroutine call. For example, considectitie using the MIPS ISA:

See Example:
/home/cs433/examples/mips-factorial

And a greatest common denominator function in Motorola @88§sembler:

See Example:
/home/cs433/examples/m68k-gcd

Finally, we can see how the gcc x86 compiler performs fumctialls by running gcc with thes
option to generate & file.

See Example:
/home/cs433/examples/gcd

10

