Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2014

Topic Notes: Object-Oriented Programming Support

Many programming languages support tiigect-oriented programming (OOP) paradigm. We
will consider some of the important issues both from a progrer’'s perspective and that of pro-
gramming language design.

The text chapter describes OOP support in several languAgai, we will focus on a subset of
the languages that cover the important OOP features.

| nheritance

The first major feature needed for OOP is support for absttaiz types (ADTs), which we just
studied.

A second ignheritance — the ability to define new classes in terms of existing ones.

A major motivation for ADTs is to support code reuse. In solineurnstances, this seems relatively
easy. Java'drrayList class serves many needs as-is, but it is often that casenhab@
provides only some of the needed functionality for a givesktaMe would like to reuse what we
can but allow this extensibility. Inheritance provides thechanism to do the latter.

First, some terminology, much of which you already know:

e classes— the definitions for ADTs
e Objects— instances of classes

e derived class or subclass — a class that inherits from another, which isptsent class or
superclass — and we say the subclasdends the parent class

e data is ininstance variables (those which are created uniquely for each object instance)
andclass variables (those which exist once per class, regardless of whetheowrrhany
instances exist)

e methods of a class provide the operations on objects of that cliastafice methods) or on
the class itself@ass methods)

e method calls are sometimes referred to as senadiesgages to an object and require both
method name and object on which to call the method while thmseclass require method
name and class name



CSC 433 Programming Languages Fall 2014

e entities of a clasd ., methods, instance variables and class variables) migindaable to
or hidden from subclasses, which is separate from beingleisir hidden from users of the
class

e asubclass magverride a method from its parent
e a subclass can add new entities to those provided by itsfparen
e with single inheritance, a subclass inherits directly from a single parent class

o with multipleinheritance, a subclass can inherit directly from multiple parent ad@ssmuch
more complex!

Polymor phism
The use of inheritance also usually requires suppompdbmor phism.

Suppose a parent claXss extended by subcla¥s and a method is provided byX and overridden
by a methoda provided byY. Then a variabld of type X could refer to an instance o&f or an

instance ofY. Polymorphism requires that a call éothroughb (e.g., b.a() ) would call the
method defined iiX if b refers to an object of typX, and to the method defined ¥if b refers to
an object of typeY. This is also calledlynamic binding.

A related concept is that of abstract method — one that a class defines only by protoca. (the
method header) but without providing a complete definitiBnclass which includes an abstract
method is called aabstract class , and cannot be instantiated. Only subclasses that define
an actual implementation for its abstract methods can kantiated. Note: C++ uses the term
virtual methods here.

OOP Design Issues

Several design issues arise in language support for OOP.

e Is everything an object?

A purely OOP language would requiezclusivity of objects — that everything is an object.
Many languages (such as Java) include support for printigppes separate from objects, and
provide wrapper classes for situations where primitiveetypeed to be treated as objects.

Allowing objects exclusively leads to a more elegant largguat the likely expense of effi-
ciency.

e Is a subclass a subtype?
That is, if we construct an instance of a subclass, is it atlsastance of its parent?
Usually, the answer here is yes.



CSC 433 Programming Languages Fall 2014

¢ Is multiple inheritance supported?

Java: no. C++: yes. The main disadvantage is in the complekityplementation. How
does the language deal with potential name collisions? iBh#ta subclass inherits from
two parents, each of which define an instance variable nantieat is visible to the subclass.

C++, for example, checks at compile time and issues an errenwfconflict occurs.
Java chose to provideterfaces to provide some of the functionality that can be provided
through multiple inheritance, while avoiding the languagenplexity that multiple inheri-
tance would introduce.

¢ Allocation and deallocation of objects
Some languages require objects to allocated from the hetipomly references on the stack.
If stack dynamic allocation of objects is permitted, thelgpeon of object dlicing can arise:

Consider a clasB which extends a clagsand adds data fields. It would be legal to declare
instances on the stack:

A a
B b;

and later assign:

a = b;

Which should be legal, asiis anA. But b requires more space than so at best only the
part ofb that useg\'s variables could be copied without exceeding the spacdeatkte
e Static vs. Dynamic binding of methods

We saw that polymorphism requires a dynamic binding, but hlaal some expense (space
and time efficiency).

So some languages allow a user to specify when binding stauitynamic or not.
Dynamic binding sometimes used a mechanism calleidtaal method table to locate the
appropriate version of a method to be called by an object.

e Initialization

On construction of a new object of a subclass, how are parembmars initialized? De-
fault values? Call a default constructor of the parent inigpyie Call a parent constructor
explicitly?

L anguage Support

The text describes support for OOP in several languages.CHiesection is well worth a read,
but we will not cover it in detail here. The other sectionsas® interesting.

3



CSC 433 Programming Languages Fall 2014

However, we will focus on Java’s OOP support using a larg&age of data structures as a case
study:

On theweb: Java Structures at
http://www.cs.williams.edu/"bailey/JavaStructures/Welcome.html

Also, the source code is available mmogul.strose.edu in /home/shared/structure



