
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Program/Problem Set 5: Parser for Little C
Due: 11:59 PM, Tuesday, October 23, 2012

For this assignment, you will be implementing a parser for a further variant of thelC (little C)
language you used in the previous assignment. You will use the tokenizer you have developed as
the first stage in this larger program that will perform a fullsyntax analysis of (i.e., parse) alC
program.

A parser is a very complex program. As such, you are strongly encouraged to form groups of 2
or 3 again for this assignment. You need not maintain the samegroups you had for the tokenizer
unless you wish to do so.

You can find and run the executable for my solution code for this program onmogul.strose.edu
in /home/cs433/probsets/parser/ .

Simplified lC Language

The following is a simplified version of the BNF rules forlC, modified to facilitate its parsing with
a recursive descent procedure. It assumes that numeric constants have been tokenized to a terminal
calledINT LIT for integers,FLOAT LIT for floating point. Also, identifiers have been tokenized
to a terminal calledIDENT.

Left recursion has been removed, and a handful of problematic constructs have been removed.

None of the changes made should change anything in your tokenizer code.

As before,

• [] denotes an optional part (there are no[] brackets in this language), and

• the top level (i.e., root) production of is<program> .

<add-op> ::= + | -

<additive-expression> ::= <multiplicative-expression> [<add-op> <additive-expression>

<assignment-expression> ::= <identifier> = <conditional-expression>

<compound-statement> ::= { [<declaration-list>] [<statement-list>] }

CSC 433 Programming Languages Fall 2012

<conditional-expression> ::= <logical-or-expression>

<conditional-statement> ::= if (<conditional-expression>) <statement> [else

<constant> ::= INT_LIT | FLOAT_LIT

<declaration> ::= <type-specifier> <initialized-declarator-list> ;

<declaration-list> ::= <declaration> [<declaration-list>]

<equality-op> ::= == | !=

<equality-expression> ::= <relational-expression> [<equality-op> <equality-expression>

<expression-statement> ::= <assignment-expression> ;

<floating-type-specifier> ::= float

<for-statement> ::= for <for-expressions> <statement>

<for-expressions> ::= (<assignment-expression> ; <conditional-expression> ;

<initialized-declarator-list> ::= <identifier> [, <initialized-declarator-list>

<integer-type-specifier> ::= int

<iterative-statement> ::= <while-statement> | <for-statement>

<logical-and-expression> ::= <equality-expression> [&& <logical-and-expression>

<logical-or-expression> ::= <logical-and-expression> [|| <logical-or-expression>

<multiplicative-expression> ::= <primary-expression> [<mult-op> <multiplicative-expression>

<mult-op> ::= * | / | %

<null-statement> ::= ;

<parenthesized-expression> ::= (<conditional-expression>)

<primary-expression> ::= IDENT | <constant>
| <parenthesized-expression>

<program> ::= void main () <compound-statement>

2

CSC 433 Programming Languages Fall 2012

<relational-expression> ::= <additive-expression> [<relational-op> <relational-expression>

<relational-op> ::= < | <= | > | >=

<statement> ::= <expression-statement> | <compound-statement>
| <conditional-statement> | <iterative-statement>
| <null-statement>

<statement-list> ::= <statement> [<statement-list>]

<type-specifier> ::= <floating-type-specifier> | <integer-type-specifier>

<while-statement> ::= while (<conditional-expression>) <statement>

Parser Requirements

Your tasks are

1. Determine from the BNF grammar above which rules need to “make choices” and how they
will make those choices. That is, those rules that have two ormore options on their right hand
side, how will your parser know which rule to apply. For this,you will need to determine
what the “first” token set is for each choice.

For example, the<iterative-statement> rule can be either a<while-statement>
or a<for-statement> We can readily determine which of these to apply. If the next
token is thewhile keyword, we have encountered awhile statement, afor keyword
indicates afor statement, and any other token means there is an error.

2. Write a C programparser.c that takes as its input a single command-line parameter,
the name of a file that contains alC program. It should follow the model of the improved
“recdescent” example in how it scans the initializes the lexer, and calls the start nonterminal
(in this case,program).

To get started, combine yourlC tokenizer code with the basic framework found in the “recdescent”
example. You will need to replace the functionsexpr(), term(), andfactor() with func-
tions for all of the nonterminals in thelC grammar. You should name the functions the same as the
nonterminals, but replace dashes with underscores.

You will have a function for each nonterminal in the grammar.Some are quite short, others
have more work to do. In most cases, it will be clear what you need to do from looking at
the BNF rule and the “first” tokens that will cause a particularrule to be applied. The trickiest
rule might be the<statement-list>, which consists of a statement, possibly followed by
another<statement-list>. In this case, you need to look at the BNF rule that produces a
<statement-list> to determine when we need to call it again, and when the<statement-list>
should end.

3

CSC 433 Programming Languages Fall 2012

The output of your program should be primarily through the providedmatch, entryMsg and
exitMsg functions. Any time a function in your parser has determinedthat part of a rule
“matches” a token on the input, callmatch with the current function name (i.e., the name of
the BNF rule currently being applied), and an appropriately indented message about the token
matched will be printed. This, combined with calls toentryMsg andexitMsg will result in the
“parse tree”-like format of the output.

When you encounter a parse error, call theerror function with an appropriate message. The
messages in my version are short and probably not that helpful in many circumstances. If you get
the parser working and still have time, see if you can improveon these messages.

A slow and steady approach will be essential here. You will definitely need to ask questions. You
will definitely need to discuss your approach with your partner(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements

Your code should be commented appropriately throughout. Please also include a longer comment
at the top of your program describing your implementation. And, of course, it should include your
name(s).

Your program should compile without warnings usinggcc on mogul when the-Wall flag is
included. This flag turns on extra warnings that will help youavoid some of the pitfalls of C
programming. If you encounter any warnings that you don’t know how to fix, ask!

Include aMakefile that compiles the program with the-Wall flag. ThisMakefile should
produce an executable program calledparser. My Makefile is onmogul.strose.edu in
/home/cs433/probsets/parser/ . Please feel free to use or modify as you see fit.

Submission

To submit this assignment, send all necessary files (your C source file and yourMakefile) as
attachments toterescoj@strose.edu by 11:59 PM, Tuesday, October 23, 2012.

Please include a meaningful subject line (something like “CS433 Program/Problem Set 5 Sub-
mission”). Please do not include any additional files, such as emacs backup files, object files, or
executable programs.

Grading

This lab will be graded out of 75 points.

4

CSC 433 Programming Languages Fall 2012

Grading Breakdown

Basic recursive descent parser organization 5 points
add op function 1 point

additive expression function 1 point
assignment expression function 2 points
compound statement function 3 points

conditional expression function 1

2
point

conditional statement function 3 points
constant function 2 points

declaration list function 2 points
declaration function 2 points

equality expression function 1 point
equality op function 1 point

expression statement function 2 points
floating type specifier function 1

2
point

for expressions function 3 points
for statement function 2 points

initialized declarator list function 3 points
integer type specifier function 1

2
point

iterative statement function 2 points
logical and expression function 1 point
logical or expression function 1 point

mult op function 1 point
multiplicative expression function 1 point

null statement function 1 point
parenthesized expression function 2 points

primary expression function 3 points
program function 3 points

relational expression function 2 points
relational op function 1 point
statement list function 2 1

2
points

statement function 3 points
type specifier function 2 points
while statement function 3 points

Command-line parameter for file name 1 point
Appropriate output format 3 points
Program documentation 4 points

Program efficiency, style, and elegance 3 points
WorkingMakefile 1 point

5

