Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2012

Program/Problem Set 5: Parser for Little C
Due: 11:59 PM, Tuesday, October 23, 2012

For this assignment, you will be implementing a parser fourdher variant of theC (little C)
language you used in the previous assignment. You will useakenizer you have developed as
the first stage in this larger program that will perform a &htax analysis ofi(e., parse) dC
program.

A parser is a very complex program. As such, you are strongtperaged to form groups of 2
or 3 again for this assignment. You need not maintain the sgogs you had for the tokenizer
unless you wish to do so.

You can find and run the executable for my solution code farghogram omogul . st r ose. edu
in/ home/ cs433/ probset s/ parser/ .

Simplified IC Language

The following is a simplified version of the BNF rules i@, modified to facilitate its parsing with
a recursive descent procedure. It assumes that numeritaotsbave been tokenized to a terminal
calledl NT_LI T for integersFLOAT _LI T for floating point. Also, identifiers have been tokenized
to a terminal called DENT.

Left recursion has been removed, and a handful of problematistructs have been removed.
None of the changes made should change anything in youritesode.

As before,

e [] denotes an optional part (there are[np brackets in this language), and

¢ the top level (e, root) production of is<pr ogr an® .

<add-op> ::= + | -
<addi tive-expression> ::= <multiplicative-expression> [<add-op> <additive-
<assi gnnent -expression> ::= <identifier> = <conditional -expressi on>

<conpound-statenent> ::= { [<declaration-list>] [<statenent-list>] }

CSC 433 Programming Languages Fall 2012

<condi ti onal - expressi on> ::= <l ogical -or-expressi on>

<conditional -statenment> ::=if (<conditional-expression>) <statenent> [el
<constant> ::= INT_LIT | FLOAT_LIT

<decl aration> ::= <type-specifier> <initialized-declarator-Ilist>;

<decl aration-list> ::= <declaration> [<declaration-Ilist>]

<equality-op> ::= == !

<rel ati onal -expression> [<equality-op> <equality:

<equal i ty- expressi on> :

<expressi on-statenment> ::= <assi gnnent-expressi on> ;

<fl oating-type-specifier> ::= float

<for-statement> ::= for <for-expressions> <statenent>

<for-expressions> ::= (<assignnent-expression> ; <conditional-expression>
<initialized-declarator-list> ::= <identifier> [, <initialized-declarator-|
<i nteger-type-specifier> ::=int
<iterative-statenent> ::= <while-statenent> | <for-statenent>

<l ogi cal - and- expressi on> ::= <equal i ty-expression> [&& <l ogi cal - and- expr es:
<l ogi cal - or-expressi on> ::= <l ogical -and-expression> [|| <l ogical -or-expre:
<nmul tiplicative-expression> ::= <primary-expression> [<mult-op> <multiplic:
<mult-op> ::=x* | [| %

<nul | -statenment> ::=;
<par ent hesi zed- expression> ::= (<conditional - expressi on>)

<pri mary-expression> ::= | DENT | <constant>
| <parenthesi zed- expressi on>

<progrant ::= void main () <conpound-st atenent >

CSC 433 Programming Languages Fall 2012

<rel ati onal -expression> ::= <additive-expression> [<relational-op> <relati
<relational-op> ::=< | <=| > | >=
<statenment> ::= <expression-statenent> | <conpound-statenent>

| <conditional-statement> | <iterative-statenent>
| <null -statenent>

<statenment-list> ::= <statenent> [<statenent-list>]

<type-specifier> ::= <floating-type-specifier> | <integer-type-specifier>

<whi |l e-statenment> ::= while (<conditional -expression>) <statenent>

Parser Requirements

Your tasks are

1. Determine from the BNF grammar above which rules need tkénchoices” and how they
will make those choices. Thatis, those rules that have twoarye options on their right hand
side, how will your parser know which rule to apply. For thysu will need to determine
what the “first” token set is for each choice.

For example, thei t er at i ve- st at enent >rule can be eitherawhi | e- st at enent >

or a<f or - st at enent > We can readily determine which of these to apply. If the next
token is thewhi | e keyword, we have encounteredafii | e statement, d or keyword
indicates & or statement, and any other token means there is an error.

2. Write a C progranpar ser . ¢ that takes as its input a single command-line parameter,
the name of a file that containd@ program. It should follow the model of the improved
“recdescent” example in how it scans the initializes theteand calls the start nonterminal
(in this casepr ogr am.

To get started, combine yol€ tokenizer code with the basic framework found in the “recées$’
example. You will need to replace the functiosspr (), t er n(), andf act or () with func-
tions for all of the nonterminals in tHE€ grammar. You should name the functions the same as the
nonterminals, but replace dashes with underscores.

You will have a function for each nonterminal in the gramm&ome are quite short, others
have more work to do. In most cases, it will be clear what yoadn® do from looking at

the BNF rule and the “first” tokens that will cause a particulse to be applied. The trickiest
rule might be the<st at enent -1 i st >, which consists of a statement, possibly followed by
another<st at enent - | i st >. In this case, you need to look at the BNF rule that produces a
<st at enent - | i st >to determine when we need to call it again, and wher#teat enent - | i st >
should end.

CSC 433 Programming Languages Fall 2012

The output of your program should be primarily through thevmted mat ch, ent r yMsg and
exi t Msg functions. Any time a function in your parser has determitieat part of a rule
“matches” a token on the input, cafiat ch with the current function namae.¢., the name of
the BNF rule currently being applied), and an appropriatejented message about the token
matched will be printed. This, combined with callseot r yMsg andexi t Msg will result in the
“parse tree’-like format of the output.

When you encounter a parse error, call gra or function with an appropriate message. The
messages in my version are short and probably not that hébpftany circumstances. If you get
the parser working and still have time, see if you can impmvéhese messages.

A slow and steady approach will be essential here. You wiihitely need to ask questions. You
will definitely need to discuss your approach with your par(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements

Your code should be commented appropriately throughoead® also include a longer comment
at the top of your program describing your implementationdfof course, it should include your
name(s).

Your program should compile without warnings usiggc on mogul when the Wal | flag is
included. This flag turns on extra warnings that will help yenuoid some of the pitfalls of C
programming. If you encounter any warnings that you dondvmow to fix, ask!

Include aMvakef i | e that compiles the program with theMal | flag. ThisMakefi | e should
produce an executable program calpett ser . My Makefi | e isonnogul . strose. edu in
/ home/ cs433/ pr obset s/ parser/ . Please feel free to use or modify as you see fit.

Submission

To submit this assignment, send all necessary files (yourugcedile and youivbkef i | e) as
attachments tterescoj @strose.edu by 11:59 PM, Tuesday, October 23, 2012.

Please include a meaningful subject line (something like483SProgram/Problem Set 5 Sub-
mission”). Please do not include any additional files, sueleraacs backup files, object files, or
executable programs.

Grading
This lab will be graded out of 75 points.

CSC 433

Programming Languages

Grading Breakdown

Basic recursive descent parser organizatio

n 5 points

add_op function 1 point
addi ti ve_expr essi on function 1 point
assi gnment _expr essi on function 2 points
conpound _st at enent function 3 points
condi ti onal _expr essi on function % point
condi ti onal _st at enent function 3 points
const ant function 2 points
decl aration_l i st function 2 points
decl ar at i on function 2 points
equal i t y_expr essi on function 1 point
equal i t y_op function 1 point
expr essi on_st at enent function 2 points
floating_type_specifier function % point
f or _expr essi ons function 3 points
f or _st at ement function 2 points
initialized.declarator_|ist function| 3 points
I nt eger _t ype_speci fi er function < point
I terative_st at enent function 2 points
| ogi cal _and_expr essi on function 1 point
| ogi cal _or _expr essi on function 1 point
nmul t _op function 1 point
mul ti plicative_expression function 1 point
nul | _st at ement function 1 point
par ent hesi zed_expr essi on function 2 points
pri mary_expressi on function 3 points
pr ogr amfunction 3 points
rel ati onal _.expr essi on function 2 points
rel ati onal _op function 1 point
st at enent _| i st function 2 3 points
st at ement function 3 points
t ype_speci fi er function 2 points
whi | e_st at enent function 3 points
Command-line parameter for file name 1 point
Appropriate output format 3 points
Program documentation 4 points
Program efficiency, style, and elegance | 3 points
Working Makef i | e 1 point

Fall 2012

