Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2012

Topic Notes: Syntax and Semantics

We now turn our attention from a specific language to the mereeral topic of describing the
syntax and semantics of a programming language.

A language’ssyntaxis the form or structure of the expressions and statemeritgliides symbol
and grammar rules. It should be easy to learn and intuitiveséo

For example, this is valid C or Java:
int x =7 + 3 - 8;
But this is not:
int x =7 + 3 - * 8§;
The syntax of a Javahi | e statement:
while (<bool ean_expr>) <statenent>
The partial syntax of anf statement:
if (<bool ean_expr>) <statenent>

Its semanticgletermines the meaning of the expressions, statementpragichm units.

For example, what does it mean when we encounter:
whil e (<bool ean_expr>) <statenent>

It means we executest at enment > zero or more times as long gbool ean_expr > evaluates
to true.

Together, syntax and semantics define the language, fortimégignguage definitionA language
definition is the complete description of the language thay iibe of use to:} other language
designers,if) implementers of the language, and) the programmers, who are the users of the
language.

CSC 433 Programming Languages Fall 2012

Errors in syntax are detected and reported by a compiler.

Errors related to semantics are defects in program logicdhase incorrect results or program
crashes.

Describing Syntax

We start by focusing on syntax, and by looking at some terlogyo

A sentences a string of characters over some alphabet.

A languageis a set of sentences.

A lexemeis the lowest level syntactic unit of a language, such asatpes, punctuation,
keywords, identifiers.

— this is one step above individual characters

A tokenis a set or category of lexemes.g, identifier, integer literal).

Some examples of lexemes and tokens from a few languages:

The BASIC statement

20 LET X = 2037

Lexemes| Tokens

20 integer_literal (or:line_nunber)
LET | et _keyword

X identifier

= equal _sign

2037 integer literal

The C or Java statement:

while (xPos > 300)

Lexemes| Tokens

while |while keywords
(open_paren
xPos identifier

> greater_than
300 integer literal
) cl ose_paren

The Java statement:

CSC 433 Programming Languages Fall 2012

Systemout.println("Nunber is " + 9 + x);

Lexemes Tokens

System i dentifier (or:cl assNane)
. dot _operat or

out identifier

. dot _oper at or

println identifier

(open_paren

doubl e_quot e

Nunber is |string_ literal

doubl e_quot e
string_concat _operat or
integer litera
string_concat _operat or
identifier

cl ose_paren

; sem col on

— X + © +

Language Recognizers and Generators

A language recognizereads an input string and determines whether it belongsetgitten lan-
guage i.e., the string isacceptefl or not (.e., the string igejected.

This is thesyntax analysipart of a compiler or interpreter.
A language generatgproduces syntactically acceptable strings of a given laggu

It is not practical to generatal valid strings. Instead, we would inspect the generatorsr(tlee
grammayj to determine if a sentence is acceptable for a given lareguag

Grammarsare a formal language-generation mechanism that are ofeshto describe syntax in
programming languages.

In the mid-1950s, linguist Noam Chomsky (1928-) developed ¢tasses of generative grammars,
two of which are useful for us:

e Context-free grammarCFGs) are useful for describing programming language gynta

e Regular grammarare useful for describing valid tokens of a programming laage.

In 1960, John Backus and Peter Naur developed a formal notkirospecifying programming
language syntax. TheBackus-Naur Form{BNF) is nearly identical to Chomsky’s context-free
grammars.

The syntax of an assignment statement in BNF:
<assi gn> => <var> = <expression> ;

3

CSC 433 Programming Languages Fall 2012

This is a BNF rule, oproductionthat defines theassi gn> abstraction

The definition in this case<var > = <expr essi on> may consist of other abstractions, lex-
emes and tokens.

In BNF, abstractions are used to represent classes of sigrgtrcictures. The names of the abstrac-
tions, callednonterminal symbo)sor simply nonterminals act like syntactic “variables”. These
are often denoted in angle brackets.

Terminalsare lexemes or tokens.

A rule has deft-hand sidg(LHS), which is a single nonterminal, andright-hand side(RHS),
which is a string of terminals and/or nonterminals.

A set of such rules form the grammar.

For example, let’s consider this grammar of BNF rules.

<progran> => begin <stnts> end

<stnts> => <stm> | <stnt>,; <stnts>

<stnt> => <var> = <expr>

var>=>a | b|] c| d]| e

<expr> => <term> + <ternr | <ternmr - <terne
<ternp => <var> | literal-integer-val ue

Everywhere we sek, it indicates “OR”, meaning that the production can use orth@bptions.

The terminal i t er al -1 nt eger - val ue indicates a token that can be any of a set of lexemes
—in this case any valid integer literal.

Here are three sentences that are in this language:

begin a = ¢ + d end
begina=b+c; d=a+ 7 end
begin a = ¢ + 100 end

But this one is not:
begin a =c + d ; end
If we tried this, we would like to see a message like:

syntax error! expected end but found ’;

CSC 433 Programming Languages Fall 2012

But how do we know?
How can we generate a sentence that conforms to this gram\iMacanderiveone.

A derivationis a repeated application of rules that convert (eventpalljnonterminals to termi-
nals. We start with atart symboblnd end with a sentence in the language.

For our example, one possibility:

<progran> => begin <stnts> end
=> Dbegin <stnt> end
=> Dbegin <var> = <expr> end
=> begin b = <expr> end
=> begin b = <ternr + <ternr end
=> Dbegin b = <var> + <ternr end
=> begin b =c + <ternr end
=> beginb =c¢ + 123 end

Each intermediate form is also calledentential form

If we can find a derviation for a sentence, then it is in the legg. So the sentence:

begin b = ¢ + 123 end

is in our language.
There are many possible (often infinite) derivations forraesece.

A leftmost (rightmost) derivatiois one in which the leftmost (rightmost) abstraction is glsthe
next one expanded

For the sentence

begin d = 10 - a end

we can generate the leftmost derivation as follows:

<progranm> => begin <stnts> end
=> begin <stnm > end

=> begi n <var> = <expr> end

=> begin d = <expr> end

=> begin d = <ternr - <ternr end
=> begin d = 10 - <ternr end

=> begin d = 10 - <var> end

=> pegin d = 10 - a end

CSC 433 Programming Languages Fall 2012

or the rightmost derviation as follows:

<progrant => begin <stnts> end
=> begin <stm > end

=> begin <var> = <expr> end

=> begin <var> = <ternr - <ternr end
=> begin <var> = <ternr - <var> end
=> begin <var> = <ternr - a end

=> begin <var> = 10 - a end

=> pegin d = 10 - a end

Why is the leftmost (or rightmost) derivation important?dtihe one that would likely be used by
a program attempting to parse its input.

For practice, consider this simple grammar:

<S> => <A> <C
<A> => a <A> | a
=>Db | b
<G =>c¢c<C | c

Which of the following sentences are generated by this gratnma

e baaabbccc
e abc

e abcabc

bbaabbaabbaabbaac

aabbbbcccccccccecececccccccccc

Parse Trees

A parse treeepresents the structure of a derivation.

e Every internal node is a non-terminal abstraction.

e Every leaf node is a terminal symbol.

For the grammar:

CSC 433 Programming Languages

<assi gn> => <var> = <expr>
<var> => A | B| C| D
<expr> => <expr> + <expr>
| <expr> * <expr>
| (<expr>)
| <var>

We can derive the senten€e= A * B with the following:

<assi gn> => <var> = <expr>

=> C = <expr>

=> C = <expr> * <expr>
=> C = <var> » <expr>
= C = A * <expr>

= C= A * <var>

= C=A=* B

Fall 2012

CSC 433 Programming Languages Fall 2012

Very nice, but why that instead of:

<assign>

<expr>

@

Is one better than the other? If so, why?

A grammar that generates a sentential form for which thexdveo or more distinct parse trees is
anambiguous grammar

Ambiguity in a grammar leads to problems because compilées basesemantic®n parse trees.

e operator precedence and associativity

o if-else

An unambiguous grammaas exactly one derivation and parse tree for each uniguerdei
form.

For the above ambiguous grammar, the following unambiggoasmar generates the same lan-
guage:

<assi gn> => <var> = <expr>
<var> => A| B| C| D
<expr> => <expr> + <ternp

| <ternp
<ternr => <ternp * <factor>
| <factor>
<factor> => (<expr>)
| <var>

This grammar enforces the precedence of multiplicatiom addition.
We also need to considassociativityof operations that are indicated by a grammar.

Consider this assignment statement:

CSC 433 Programming Languages Fall 2012

A=B+C+A

A leftmost derivation will result in a parse tree that willusseB + Cto be computed first, then
the result added té. This is what we would expect from our usual left-to-rightiation of
operations that are of equal precedence.

Mathematically, it would not matter if we had a grammar theetulted inC + A being computed
first.

But what if the statement was
A=B/ Cx A

Here, even though the two operations are at the same preszeeel, it is important that they are
evaluated left to right.

With integer addition associativity would not matter, botathat with floating point addition, it
could.

The Danglingel se

If you write the following code:

if x >0 then
if y >0 then
y++;
el se
Z++:

Does theel se go with the firsti f or the second? It would be excellent if this is not ambiguous
(likely want it attached to the second, as the indentatimvalsuggests).

Consider this grammar for arf statement:

<if_stm> =>if <logic_expr>then <stm>
| if <logic_expr>then <stnt> else <stnt>

We can construct two parse trees, one of which attachesltse to the first, the other to the
second.

CSC 433 Programming Languages Fall 2012

Figure 3.5 <if_stmt>

Two distinct parse trees
for the same sentential
form

\\\\ﬁ,\\

if <logic_expr> then <stmt> else <stmt>

<if_stmt>

/)

>

— g
if <logic_expr> then <stmt>

<if_stmt>

\ .
if <logic_expr> then <stmt>

<if_stmt>

~—_
) N T T
if <logic_expr> then <stmt> else <stmt>

Figure 3.5 from Sebesta 2012.

We can create a more complex, but unambiguous grammar toectiguelse gets matched as we
intend:

<stnt> => <mat ched> | <unmat ched>
<mat ched> => if <l ogic_expr> then <matched> el se <mat ched>
| <non-if stnt>
<unmat ched> => if <l ogic_expr> then <stnmnt>
| if <logic_expr> then <matched> el se <unmat ched>

This gives us a unique parse tree for the program snip witklaingling else.

<stmt>

y

<unmatched>

if <logic_expr> then <stmt>

V '

x>0 <matc >

if <logic_expr> then <matched> else <matched>

Y \

y>0 <non-if stmt> <non-if stmt>
y++ zZ++

10

CSC 433 Programming Languages Fall 2012

Lexical Analysis

We now leave syntax analysis and parse trees for a bit toderiekical analysis- the process of
identifying the small-scale language constructs.

These are the lexemes — names, operators, numeric litpralstuation, line numbers (BASIC),
etc.

In many ways, lexical analysis is similar to syntax analyisig it is generally a easier problem.

So lexical analysis is usually performed separately fronmiayanalysis. Why?

e Simplicity: simpler approaches are suitable for lexicalgsis

o Efficiency: focuses optimization efforts on lexical anayand syntax analysis separately

o Portability: lexical analyzer not always portable (due te fiO), whereas syntax analyzer
may remain portable

The lexical analyzer is simply gattern matcher

¢ |dentifies and isolates lexemes
e Is a “front-end” for the parser, which can then deal strigtith tokenized input
e Lexemes are logical substrings of the source program thabhgé¢ogether
e Lexical analyzer assigns codes called tokens to the lexemes
— e.gsumis a lexeme; antl DENT is the token

Before we look at specifics of how a lexical analyzer workss lgtink about what some of these
lexemes look like.

First, consider integer constants in C/C++. These include:

an optional unary minus sign

digits

optional e notation

different prefixes for octal and hexadecimal

See Example:
/ home/ cs433/ exanpl es/ i ntconstants

To create a formal definition of an integer with the restatihat it must be in base 10, and that it
does not use e notation):

11

CSC 433 Programming Languages Fall 2012

(eU-)-aU2UsUsUsUsUrUsU9) - oUrU2U3U4UsUsUTUS U9

this means either nothing or a unary -, followed by one digthie 1-9 range, then 0 or more copies
of digits 0-9. The “any number” is indicated by tkeat the end.

Alternately, we could use a Unix-likegular expression
(-?[1-9][0-9]+|0)

Again, an optional -, one digit 1-9, zero or more digits 0-® &single 0.

We can also see this aglaterministic finite automaton (DFAY state diagram

0 [1-9]
[1-9]

® O

This can also be described by a grammar.

<int-literal > => -<unsigned-int>
| <unsi gned-int>
| O
<unsi gned-int> => [1-9]
| [1-9]<one-or-nore-digits>
<one-or-nore-digits> => [0-9]
| [0-9]<one-or-nore-digits>

A language igegular if

e It can be represented by a regular expression.

e It can be represented by a deterministic finite automatoMJDF

12

CSC 433 Programming Languages Fall 2012

e It can be represented by a regular grammar.

These are all equivalent statements.

We have seen grammars.régular grammairis one that has a very restricted form for its produc-
tions:

e aproduction’s RHS may be a single terminal

e a production’s RHS may be a single terminal followed by a @mginterminal

A grammar is regular iff it produces a regular language.

The grammar given above for integer literals is not a valgutar grammar because of the second
rule (its RHS is a single nonterminal). We can rewrite it a bieliminate this.

<int-literal> => -<unsigned-int>

| [1-9]

| [1-9]<one-or-nore-digits>

| O
<unsi gned-int> => [1-9]

| [1-9] <one-or-nore-digits>
<one-or-nore-digits> => [0-9]

| [0-9]<one-or-nore-digits>

We've basically put a copy of the productions faunsi gned- i nt > into the productions for
<int-1literal >to come up with an equivalent grammar which now does satisfyr¢quire-
ments for a regular grammar.

A Lexical Analyzer

Our textbook has a demonstration of a simple lexical ansiysagram for arithmetic expressions
onp.172-177.

It is worth some time to understand the relation between tdwe sliagram below (from p. 173)
with the program, and to understand how the program works.

Letter/Digit
s ~addchar; getchar "\

N,

} (A) —— return looku exeme,
\Si‘“/ addChar; getChar i =/ L
\
W, Digit V% =
s »((int) —— return Int_Lit
addchar; getChar _\\. L =
/ N
N __ Digit _7,//
addchar; getchar
\\ //;;‘ :ﬂ\\ te—lookup (nextchar)

~ TN
—{ (knonn) }—orerer—(@one)

return t

13

CSC 433 Programming Languages Fall 2012

Figure 4.1 from Sebesta 2012.

An improved version of the C program from the text:

See Example:
/ home/ cs433/ exanpl es/ front

The Parsing Problem

We now turn our attention back to the more complicated proldéparsinga program in a given
language.

The parser should be able to:

e Find syntax errors and report them with appropriate message

e Produce the parse tree for the program.
There are two major categories of parseéog downandbottom up

e Atop down parser builds the tree from the root, matching @rle$t derivation.

— The parser must choose the correct production of the leftnm#erminal in a senten-
tial form to get the next sentential form in the leftmost dation, using only the first
token produced by that leftmost nonterminal.

— The most common top-down parsing algorithmsraairsive descergndLL parsers
e A bottom up parser starts at the leaves, matching a rightdesstation.

— Given a sentential form, determine what substring of thenfdmat is the right-hand
side of the rule in the grammar that must be reduced to protihgcerevious sentential
form in the right derivation. (Yikes!)

— The most common bottom-up parsing algorithms are in the IoRtlja

In order to be useful, a parser should look ahead only a stogén in the input.

The Complexity of Parsing:

e Parsers that can be used for an arbitrary unambiguous graarsaomplex and inefficient
(O(n?), wheren is the length of the input).

e A parser for a programming language compiler needs to be mack efficient O(n)), so
programming languages must have much more restrictivergeasito make this possible.

14

CSC 433 Programming Languages Fall 2012

Recursive Descent Parsing

A recursive descent parsés a top down parsing technique that consists of a colleaifqrroce-
dures which mimic the RHS of all productions for each nonteahi

e Itis often easy to generate from EBNF representations.

e It can use backtracking (trial and error, essentially) yortrultiple options when it is not
clear which rule must be applied next, but this is inefficiemd we strive to avoid it.

Consider this unambiguous grammar:

<expr> => <expr> + <ternp | <expr> - <terne | <ternp
<ternp => <ternp * <factor> | <ternr /| <factor> | <factor>
<factor> => (<expr>) | id | int-constant

We first convert it to theExtended Backus Naur Form (EBNRyhich permits some shorthand
notations in our grammar:

<expr> => <ternr { (+| -) <ternmp }
<ternp => <factor> { (» | /) <factor>}
<factor> => (<expr>) | id | int-constant

The items inside thg¢ and} are items in those rules that can be repeated (or left oud.options
inside the parens separated|byepresent a choice of either of those.

Each rule in the grammar becomes a function in the recur&seeant parser.

See Example:
/ homre/ cs433/ exanpl es/ recdescent

As written, this program parses only expressions (not &gignment statements), so we begin by
callingl ex and therexpr .

Theexpr function matches a term followed by any number of + or - tokeliswed by another
term. When it needs to match another nonterminal, we makd todhkt nonterminal’s function.
When we need to match a terminal, we need to find iiéxt Token, then calll ex to advance
to the next.

Thet er mfunction is very similar teexpr .
Thef act or function has more work to do.

A nonterminal that has more than one RHS requires an init@tgss to determine which RHS it
is to parse

15

CSC 433 Programming Languages Fall 2012

e The correct RHS is chosen on the basis of the next token of {tipeifookahead)

e The next token is compared with the first token that can bergéee by each RHS until a
match is found

¢ If no match is found, it is a syntax error

This is demonstrated by tHeact or function.

Let’s look at what an f statement’s recursive descent parser might look like (assywe had
lots of other functionality added to support this):

The production this implements is

<ifstm> => if (<boolexpr>) <statenment> [else <statenment>]

void ifstmt(){

if (nextToken !'= IF_CODE) {
error("expected if");

}

el se {

lex(); // match the if
i f (nextToken != LEFT_PAREN) {
error("expected (");

}
el se {
lex(); // match the (, (Note: error in text; this was omtted)
bool expr () ;
i f (nextToken != RI GHT_PAREN) {
error("expected)");
}
el se {
lex(); // match the), (Note: error in text; this was onitted)
statenent () ;
i f (next Token == ELSE_CODE) {
lex(); // match the el se
statenent ();
}
}
}

This is more complex than the ones we saw, but the idea rerttegrsame.

16

CSC 433 Programming Languages Fall 2012

Restrictions of Recursive Descent

Not all grammars can be immediately parsed by a recursiveetdésnethod, but rules may be
rewritten in order for recursive descent to work.

If we have a grammar with a rule like:
<expr> => <expr> + <ternp

This production hakeft recursion which would lead to an infinitely recursiexpr method.

The grammar needs to be rewritten to eliminate the left mdonr This process can be done with
Paull’'s Algorithm

To remove immediate left recursion — a nonterminal with picitbns that have the same nonter-
minal on the left:

A=A | ... | A | Bl .o | B
where none of thg; begins with A, becomes
A=A | ... | BA

A=A ... | a,A| €

See the example at the bottom of p. 187 and the top of p. 18&fapglication of this.

Another restriction is that we should be able to choose thheecoRHS of a production with
multiple rules based only on the next token on the input. Tehi®y the grammar must pass the
pairwise disjointness test

For each nontermina\ with more than one RHS, it must be the case that for each pailesA
=> andA => Qi
FIRST(o;) N FIRST (o) =0

where

FIRST (o) = {ala— >" af}

and ifa— >* ¢, theneis in FIRST («).

There are algorithms to compute thd RST" sets, but for the grammars we will consider, we can
determine these by looking at the rules.

There are also algorithms to “left factor” a grammar to altbem to pass the pairwise disjointness
test.

17

CSC 433 Programming Languages Fall 2012

Grammar Classes

A grammar is said to beL (k) if parsing decisions require onlytokens of lookahead.

e First L stands for Left to Right scanning of token input

e Second L stands for producing a leftmost derivation

An LL(1) grammar lends itself to recursive descent parsing.
Other grammar classes include LR(k), LALR(k) — topics for a pdets course.

We will not consider these other classes in detail, nor wéllaok in detail at bottom up parsing.

Other Parsing Issues

There are a number of other parsing-related issues that @ith wientioning, but which are all
beyond the scope of this course.

We have not considered correctness issues beyond comstro€ta parse tree. But how do we
ensure that variables are declared before use? How do weeeongerations are on the correct
type? How do we take a valid integer or floating point literatldurn it into a usable binary

representation?

These and other issues are discussed in the parts of chapted®l not cover in class. These
topics are interesting and useful, but you will not be resgae for that material.

18

