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Topic Notes: Syntax and Semantics

We now turn our attention from a specific language to the more general topic of describing the
syntax and semantics of a programming language.

A language’ssyntaxis the form or structure of the expressions and statements. It includes symbol
and grammar rules. It should be easy to learn and intuitive touse.

For example, this is valid C or Java:

int x = 7 + 3 - 8;

But this is not:

int x = 7 + 3 - * 8;

The syntax of a Javawhile statement:

while ( <boolean_expr> ) <statement>

The partial syntax of anif statement:

if ( <boolean_expr> ) <statement>

Its semanticsdetermines the meaning of the expressions, statements, andprogram units.

For example, what does it mean when we encounter:

while ( <boolean_expr> ) <statement>

It means we execute<statement> zero or more times as long as<boolean_expr> evaluates
to true.

Together, syntax and semantics define the language, formingthe language definition. A language
definition is the complete description of the language that may be of use to (i) other language
designers, (ii) implementers of the language, and (iii) the programmers, who are the users of the
language.
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Errors in syntax are detected and reported by a compiler.

Errors related to semantics are defects in program logic that cause incorrect results or program
crashes.

Describing Syntax
We start by focusing on syntax, and by looking at some terminology:

• A sentenceis a string of characters over some alphabet.

• A languageis a set of sentences.

• A lexemeis the lowest level syntactic unit of a language, such as operators, punctuation,
keywords, identifiers.

– this is one step above individual characters

• A tokenis a set or category of lexemes (e.g., identifier, integer literal).

Some examples of lexemes and tokens from a few languages:

The BASIC statement

20 LET X = 2037

Lexemes Tokens
20 integer_literal (or: line_number)
LET let_keyword
X identifier
= equal_sign
2037 integer_literal

The C or Java statement:

while ( xPos > 300 )

Lexemes Tokens
while while_keywords
( open_paren
xPos identifier
> greater_than
300 integer_literal
) close_paren

The Java statement:

2



CSC 433 Programming Languages Fall 2012

System.out.println( "Number is " + 9 + x );

Lexemes Tokens
System identifier (or: className)
. dot_operator
out identifier
. dot_operator
println identifier
( open_paren
" double_quote
Number is string_literal
" double_quote
+ string_concat_operator
9 integer_literal
+ string_concat_operator
x identifier
) close_paren
; semicolon

Language Recognizers and Generators

A language recognizerreads an input string and determines whether it belongs to the given lan-
guage (i.e., the string isaccepted) or not (i.e., the string isrejected).

This is thesyntax analysispart of a compiler or interpreter.

A language generatorproduces syntactically acceptable strings of a given language.

It is not practical to generateall valid strings. Instead, we would inspect the generator rules (the
grammar) to determine if a sentence is acceptable for a given language.

Grammarsare a formal language-generation mechanism that are often used to describe syntax in
programming languages.

In the mid-1950s, linguist Noam Chomsky (1928–) developed four classes of generative grammars,
two of which are useful for us:

• Context-free grammars(CFGs) are useful for describing programming language syntax.

• Regular grammarsare useful for describing valid tokens of a programming language.

In 1960, John Backus and Peter Naur developed a formal notation for specifying programming
language syntax. TheirBackus-Naur Form(BNF) is nearly identical to Chomsky’s context-free
grammars.

The syntax of an assignment statement in BNF:

<assign> => <var> = <expression> ;
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This is a BNF rule, orproductionthat defines the<assign> abstraction.

The definition, in this case<var> = <expression> may consist of other abstractions, lex-
emes and tokens.

In BNF, abstractions are used to represent classes of syntactic structures. The names of the abstrac-
tions, callednonterminal symbols, or simplynonterminals, act like syntactic “variables”. These
are often denoted in angle brackets.

Terminalsare lexemes or tokens.

A rule has aleft-hand side(LHS), which is a single nonterminal, and aright-hand side(RHS),
which is a string of terminals and/or nonterminals.

A set of such rules form the grammar.

For example, let’s consider this grammar of BNF rules.

<program> => begin <stmts> end
<stmts> => <stmt> | <stmt> ; <stmts>
<stmt> => <var> = <expr>
<var> => a | b | c | d | e
<expr> => <term> + <term> | <term> - <term>
<term> => <var> | literal-integer-value

Everywhere we see|, it indicates “OR”, meaning that the production can use one ofthe options.

The terminalliteral-integer-value indicates a token that can be any of a set of lexemes
– in this case any valid integer literal.

Here are three sentences that are in this language:

begin a = c + d end

begin a = b + c ; d = a + 7 end

begin a = c + 100 end

But this one is not:

begin a = c + d ; end

If we tried this, we would like to see a message like:

syntax error! expected end but found ’;’
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But how do we know?

How can we generate a sentence that conforms to this grammar?We canderiveone.

A derivationis a repeated application of rules that convert (eventually) all nonterminals to termi-
nals. We start with astart symboland end with a sentence in the language.

For our example, one possibility:

<program> => begin <stmts> end
=> begin <stmt> end
=> begin <var> = <expr> end
=> begin b = <expr> end
=> begin b = <term> + <term> end
=> begin b = <var> + <term> end
=> begin b = c + <term> end
=> begin b = c + 123 end

Each intermediate form is also called asentential form.

If we can find a derviation for a sentence, then it is in the language. So the sentence:

begin b = c + 123 end

is in our language.

There are many possible (often infinite) derivations for a sentence.

A leftmost (rightmost) derivationis one in which the leftmost (rightmost) abstraction is always the
next one expanded.

For the sentence

begin d = 10 - a end

we can generate the leftmost derivation as follows:

<program> => begin <stmts> end
=> begin <stmt> end
=> begin <var> = <expr> end
=> begin d = <expr> end
=> begin d = <term> - <term> end
=> begin d = 10 - <term> end
=> begin d = 10 - <var> end
=> begin d = 10 - a end
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or the rightmost derviation as follows:

<program> => begin <stmts> end
=> begin <stmt> end
=> begin <var> = <expr> end
=> begin <var> = <term> - <term> end
=> begin <var> = <term> - <var> end
=> begin <var> = <term> - a end
=> begin <var> = 10 - a end
=> begin d = 10 - a end

Why is the leftmost (or rightmost) derivation important? It is the one that would likely be used by
a program attempting to parse its input.

For practice, consider this simple grammar:

<S> => <A> <B> <C>
<A> => a <A> | a
<B> => b <B> | b
<C> => c <C> | c

Which of the following sentences are generated by this grammar?

• baaabbccc

• abc

• abcabc

• bbaabbaabbaabbaac

• aabbbbccccccccccccccccccccc

Parse Trees
A parse treerepresents the structure of a derivation.

• Every internal node is a non-terminal abstraction.

• Every leaf node is a terminal symbol.

For the grammar:
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<assign> => <var> = <expr>
<var> => A | B | C | D
<expr> => <expr> + <expr>

| <expr> * <expr>
| ( <expr> )
| <var>

We can derive the sentenceC = A * B with the following:

<assign> => <var> = <expr>
=> C = <expr>
=> C = <expr> * <expr>
=> C = <var> * <expr>
=> C = A * <expr>
=> C = A * <var>
=> C = A * B

which corresponds to this parse tree:

<expr> *

<expr>

A

<expr>

=<var>

<var> <var>

B

C

<assign>

Next, we draw a parse tree forB = A * C + D

A <var>

<expr>=

<var>

<var>

<expr>

+

<var>

C

B

<expr>

*

D

<assign>
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Very nice, but why that instead of:

<var>

<expr>

<expr>

C

<var>

*

B

A

=

D

+

<var>

<expr>

<var>
<expr><expr>

<assign>

Is one better than the other? If so, why?

A grammar that generates a sentential form for which there are two or more distinct parse trees is
anambiguous grammar.

Ambiguity in a grammar leads to problems because compilers often basesemanticson parse trees.

• operator precedence and associativity

• if-else

An unambiguous grammarhas exactly one derivation and parse tree for each unique sentential
form.

For the above ambiguous grammar, the following unambiguousgrammar generates the same lan-
guage:

<assign> => <var> = <expr>
<var> => A | B | C | D
<expr> => <expr> + <term>

| <term>
<term> => <term> * <factor>

| <factor>
<factor> => ( <expr> )

| <var>

This grammar enforces the precedence of multiplication over addition.

We also need to considerassociativityof operations that are indicated by a grammar.

Consider this assignment statement:
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A = B + C + A

A leftmost derivation will result in a parse tree that will causeB + C to be computed first, then
the result added toA. This is what we would expect from our usual left-to-right evaluation of
operations that are of equal precedence.

Mathematically, it would not matter if we had a grammar that resulted inC + A being computed
first.

But what if the statement was

A = B / C * A

Here, even though the two operations are at the same precedence level, it is important that they are
evaluated left to right.

With integer addition associativity would not matter, but note that with floating point addition, it
could.

The Danglingelse

If you write the following code:

if x > 0 then
if y > 0 then
y++;

else
z++;

Does theelse go with the firstif or the second? It would be excellent if this is not ambiguous
(likely want it attached to the second, as the indentation above suggests).

Consider this grammar for anif statement:

<if_stmt> => if <logic_expr> then <stmt>
| if <logic_expr> then <stmt> else <stmt>

We can construct two parse trees, one of which attaches theelse to the first, the other to the
second.
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Figure 3.5 from Sebesta 2012.

We can create a more complex, but unambiguous grammar to ensure the else gets matched as we
intend:

<stmt> => <matched> | <unmatched>
<matched> => if <logic_expr> then <matched> else <matched>

| <non-if stmt>
<unmatched> => if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

This gives us a unique parse tree for the program snip with thedangling else.

y++

<stmt>

<unmatched>

if <logic_expr> then <stmt>

x > 0 <matched>

if <logic_expr> then <matched> else <matched>

y > 0 <non−if stmt> <non−if stmt>

z++
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Lexical Analysis
We now leave syntax analysis and parse trees for a bit to consider lexical analysis– the process of
identifying the small-scale language constructs.

These are the lexemes – names, operators, numeric literals,punctuation, line numbers (BASIC),
etc.

In many ways, lexical analysis is similar to syntax analysis, but it is generally a easier problem.

So lexical analysis is usually performed separately from syntax analysis. Why?

• Simplicity: simpler approaches are suitable for lexical analysis

• Efficiency: focuses optimization efforts on lexical analysis and syntax analysis separately

• Portability: lexical analyzer not always portable (due to file I/O), whereas syntax analyzer
may remain portable

The lexical analyzer is simply apattern matcher.

• Identifies and isolates lexemes

• Is a “front-end” for the parser, which can then deal strictlywith tokenized input

• Lexemes are logical substrings of the source program that belong together

• Lexical analyzer assigns codes called tokens to the lexemes

– e.g.sum is a lexeme; andIDENT is the token

Before we look at specifics of how a lexical analyzer works, let’s think about what some of these
lexemes look like.

First, consider integer constants in C/C++. These include:

• an optional unary minus sign

• digits

• optional e notation

• different prefixes for octal and hexadecimal

See Example:
/home/cs433/examples/intconstants

To create a formal definition of an integer with the restriction that it must be in base 10, and that it
does not use e notation):
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this means either nothing or a unary -, followed by one digit in the 1-9 range, then 0 or more copies
of digits 0-9. The “any number” is indicated by the* at the end.

Alternately, we could use a Unix-likeregular expression:

(-?[1-9][0-9]*|0)

Again, an optional -, one digit 1-9, zero or more digits 0-9, OR a single 0.

We can also see this as adeterministic finite automaton (DFA)or state diagram.

neg

intzero

start

0

−

[1−9]

[1−9]

[0−9]

This can also be described by a grammar.

<int-literal> => -<unsigned-int>
| <unsigned-int>
| 0

<unsigned-int> => [1-9]
| [1-9]<one-or-more-digits>

<one-or-more-digits> => [0-9]
| [0-9]<one-or-more-digits>

A language isregular if

• It can be represented by a regular expression.

• It can be represented by a deterministic finite automaton (DFA).
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• It can be represented by a regular grammar.

These are all equivalent statements.

We have seen grammars. Aregular grammaris one that has a very restricted form for its produc-
tions:

• a production’s RHS may be a single terminal

• a production’s RHS may be a single terminal followed by a single nonterminal

A grammar is regular iff it produces a regular language.

The grammar given above for integer literals is not a valid regular grammar because of the second
rule (its RHS is a single nonterminal). We can rewrite it a bit to eliminate this.

<int-literal> => -<unsigned-int>
| [1-9]
| [1-9]<one-or-more-digits>
| 0

<unsigned-int> => [1-9]
| [1-9]<one-or-more-digits>

<one-or-more-digits> => [0-9]
| [0-9]<one-or-more-digits>

We’ve basically put a copy of the productions for<unsigned-int> into the productions for
<int-literal> to come up with an equivalent grammar which now does satisfy the require-
ments for a regular grammar.

A Lexical Analyzer

Our textbook has a demonstration of a simple lexical analysis program for arithmetic expressions
on p. 172–177.

It is worth some time to understand the relation between the state diagram below (from p. 173)
with the program, and to understand how the program works.
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Figure 4.1 from Sebesta 2012.

An improved version of the C program from the text:

See Example:
/home/cs433/examples/front

The Parsing Problem
We now turn our attention back to the more complicated problem of parsinga program in a given
language.

The parser should be able to:

• Find syntax errors and report them with appropriate messages.

• Produce the parse tree for the program.

There are two major categories of parsers:top downandbottom up.

• A top down parser builds the tree from the root, matching a leftmost derivation.

– The parser must choose the correct production of the leftmost nonterminal in a senten-
tial form to get the next sentential form in the leftmost derivation, using only the first
token produced by that leftmost nonterminal.

– The most common top-down parsing algorithms arerecursive descentandLL parsers.

• A bottom up parser starts at the leaves, matching a rightmostderviation.

– Given a sentential form, determine what substring of the form that is the right-hand
side of the rule in the grammar that must be reduced to producethe previous sentential
form in the right derivation. (Yikes!)

– The most common bottom-up parsing algorithms are in the LR family.

In order to be useful, a parser should look ahead only a singletoken in the input.

The Complexity of Parsing:

• Parsers that can be used for an arbitrary unambiguous grammar are complex and inefficient
(O(n3), wheren is the length of the input).

• A parser for a programming language compiler needs to be muchmore efficient (O(n)), so
programming languages must have much more restrictive grammars to make this possible.
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Recursive Descent Parsing

A recursive descent parseris a top down parsing technique that consists of a collectionof proce-
dures which mimic the RHS of all productions for each nonterminal.

• It is often easy to generate from EBNF representations.

• It can use backtracking (trial and error, essentially) to try multiple options when it is not
clear which rule must be applied next, but this is inefficientand we strive to avoid it.

Consider this unambiguous grammar:

<expr> => <expr> + <term> | <expr> - <term> | <term>
<term> => <term> * <factor> | <term> / <factor> | <factor>
<factor> => ( <expr> ) | id | int-constant

We first convert it to theExtended Backus Naur Form (EBNF), which permits some shorthand
notations in our grammar:

<expr> => <term> { ( + | - ) <term> }
<term> => <factor> { ( * | / ) <factor> }
<factor> => ( <expr> ) | id | int-constant

The items inside the{ and} are items in those rules that can be repeated (or left out). The options
inside the parens separated by| represent a choice of either of those.

Each rule in the grammar becomes a function in the recursive descent parser.

See Example:
/home/cs433/examples/recdescent

As written, this program parses only expressions (not full assignment statements), so we begin by
callinglex and thenexpr.

Theexpr function matches a term followed by any number of + or - tokensfollowed by another
term. When it needs to match another nonterminal, we make a call to that nonterminal’s function.
When we need to match a terminal, we need to find it innextToken, then calllex to advance
to the next.

Theterm function is very similar toexpr.

Thefactor function has more work to do.

A nonterminal that has more than one RHS requires an initial process to determine which RHS it
is to parse
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• The correct RHS is chosen on the basis of the next token of input(the lookahead)

• The next token is compared with the first token that can be generated by each RHS until a
match is found

• If no match is found, it is a syntax error

This is demonstrated by thefactor function.

Let’s look at what anif statement’s recursive descent parser might look like (assuming we had
lots of other functionality added to support this):

The production this implements is

<ifstmt> => if ( <boolexpr> ) <statement> [ else <statement> ]

void ifstmt(){

if (nextToken != IF_CODE) {
error("expected if");

}
else {

lex(); // match the if
if (nextToken != LEFT_PAREN) {
error("expected (");

}
else {
lex(); // match the (, (Note: error in text; this was omitted)
boolexpr();
if (nextToken != RIGHT_PAREN) {

error("expected )");
}
else {

lex(); // match the ), (Note: error in text; this was omitted)
statement();
if (nextToken == ELSE_CODE){

lex(); // match the else
statement();

}
}

}
}

}

This is more complex than the ones we saw, but the idea remainsthe same.
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Restrictions of Recursive Descent

Not all grammars can be immediately parsed by a recursive descent method, but rules may be
rewritten in order for recursive descent to work.

If we have a grammar with a rule like:

<expr> => <expr> + <term>

This production hasleft recursion, which would lead to an infinitely recursiveexpr method.

The grammar needs to be rewritten to eliminate the left recursion. This process can be done with
Paull’s Algorithm.

To remove immediate left recursion – a nonterminal with productions that have the same nonter-
minal on the left:

A => Aα1 | ... | Aαm | β1 | ... | βn

where none of theβi begins with A, becomes

A => β1A′ | ... | βnA′

A′ => α1A′ | ... | αmA′ | ǫ

See the example at the bottom of p. 187 and the top of p. 188 for an application of this.

Another restriction is that we should be able to choose the correct RHS of a production with
multiple rules based only on the next token on the input. To dothis, the grammar must pass the
pairwise disjointness test.

For each nonterminalA with more than one RHS, it must be the case that for each pair of rulesA
=> αi andA => αj,

FIRST (αi) ∩ FIRST (αj) = ∅

where

FIRST (α) = {a|α− >∗ aβ}

and ifα− >∗ ǫ, thenǫ is in FIRST (α).

There are algorithms to compute theFIRST sets, but for the grammars we will consider, we can
determine these by looking at the rules.

There are also algorithms to “left factor” a grammar to allowthem to pass the pairwise disjointness
test.
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Grammar Classes
A grammar is said to beLL(k) if parsing decisions require onlyk tokens of lookahead.

• First L stands for Left to Right scanning of token input

• Second L stands for producing a leftmost derivation

An LL(1) grammar lends itself to recursive descent parsing.

Other grammar classes include LR(k), LALR(k) – topics for a compilers course.

We will not consider these other classes in detail, nor will we look in detail at bottom up parsing.

Other Parsing Issues
There are a number of other parsing-related issues that are worth mentioning, but which are all
beyond the scope of this course.

We have not considered correctness issues beyond construction of a parse tree. But how do we
ensure that variables are declared before use? How do we ensure operations are on the correct
type? How do we take a valid integer or floating point literal and turn it into a usable binary
representation?

These and other issues are discussed in the parts of chapter 3we did not cover in class. These
topics are interesting and useful, but you will not be responsible for that material.
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