Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2012

Topic Notes: Subprograms

Our next familiar programming language construct to exammnmore detail is thsubprogram
Whether called subroutines, procedures, functions, or @asthmany of the fundamentals are the
same.

We typically categorize subprograms into these groups:

e procedure®r subroutineghat do not return a value

e functionsthat return a single value

e methodsare associated with an object (see Chapters 11-12, which Mgkely only touch
on briefly)

Even in early programming languages, the use of subprogname®mphasized to promote

e code reusability
e modularity — a high-level problem decomposition

e resource efficiency

— memory space for code
— reduce programming time

The general behavior of subprograms is well known to us agraromers:

e a subprogram has a single entry point (the beginning)
o the caller’s execution stops while the subprogram executes

e control returns to the caller upon completion
And the basic terminology:

e subprograndefinition— the declaration and implementation of a subprogram

e subprograntall — the explicit activation statement of a subprogram

CSC 433 Programming Languages Fall 2012

e subprogranheader- the first part of the definition

— ssometimes calledspecificatioror interface
— specifiegypeof subprogram, iteame and itsparametergif any)

e subprogranbody— statements which implement the subprogram

e subprogranparameter profileor signature— the number, order and types of the subpro-
gram’s formal parameters

e subprogranprotocol— a subprogram’s parameter profile plus its return type

e subprograndeclaration— a mini “pre-definition”, stating protocol informatioe.g, C/C++
Prototypes)

e formal parameter name listed in the subprogram header and used in the subprdige a
local variable

e actual parameter a value or address used in the subprogram call statement

How do actual parameters get matched to the appropriateafqanameters on a subprogram call?

We are likely most familiar wittpositional parameters the mapping of actual to formal parame-
ters is based on the order in the parameter list:

int sub(int x, int y) {

return x - vy;

sub(5, 2);

Here, we all know thax is assigned andy is assigne@ on the example function call.

You may or may not have seen examples of languages thdtayseord parametersvhere the
actual parameters are explicitly matched to formal pararadty name.

This means parameters can be listed in any order, avoidamgposition errors. However, it re-
quires that callers must know the formal parameter names.

Ada (of course) is one of the languages that supports thist&xtt shows an example from Python.
Fortran 90 does this as well:

On the web: F90 Keyword arguments and default arguments at
http://aeneas. ps. uci . edu/ absoft/c8. ht m

CSC 433 Programming Languages Fall 2012

The above also shows how Fortran 90 deals w#Fault parametersin these cases, a parameter
can be left off and given a default value when it is not spetifie

C++ supports this, but since its parameters are specifiedoasiyionally, any optional parameters
must come at the end of the parameter list.

See Example:
/ home/ cs433/ exanpl es/ cppdef aul t

Many languages also support variable-length argumest(iatriadic functiony. We know that C
must support this if functions liker i nt f could work, since it can take any number of parameters,
depending on the number of specifiers in the format string.

But how does it do it?

See Example:
/ homre/ cs433/ exanpl es/ var ar gs

For examples in many languages:

On the web: Wikipedia article “Variadic function” at
http://en.w ki pedi a. org/w ki /Vari adi c_function

Perl passes all parameters to subprograms in a speciahiptenarray” called@ .

On the web: Using the Parameter Array at
http://ww. cs. cf. ac. uk/ Dave/ PERL/ node50. ht m

Models of Parameter Passing
The text discusses many design issues for subprograms gbwtllocus on just a few.

The first is the semantics of parameter passing. That is, wieehave a subprogram, how does
information pass through the parameters between the eaitethe callee?

There are three major models:

¢ in mode- information flows through the parameter from caller toesll
e out mode- information flows through the parameter from the calle&kltathe caller

¢ inout mode- information flows through the parameter from the callehtodallee, then back
from the callee to the caller

General Semantics
In most cases, parameter passing occurs through a runiticie s

A subroutine call generally involves:
e setting up and initializing memory for parameters

3

CSC 433 Programming Languages Fall 2012

e stack-dynamic allocation of local variables
e saving of the execution status of calling program

e transfer of control and arrange for the return
and on return:

¢ in mode and inout mode parameters must have their valuasieetu
¢ deallocation of stack-dynamic local variables
e restoration of execution status
e return of control to the caller
The subprogram linkagewhich is the entire call and return process, most often @pepon an

activation recordplaced on the program’s run-time call stack.

An activation record for simple subprograms consists @dtparts:

e space for local variables
e space for parameters

e the return address

If we have support for stack dynamic local variables (whikhie case for the modern languages
that support recursion), we also need a register which witl b base address (often callefiiane
pointer). The frame pointer is the base to which the offsets of alila@ariables and parameters
are added to compute their actual address.

In these cases, dynamic link addresswhich points to the start of the activation record of the
caller, is part of the activation record so it can be restamdeturn.

See the text examples (or text’s PPT) for a few examples sf thi

These are accomplished using a number of methods for paapasing.

Call by Value

With call by value the formal parameter is initialized by actual parametea ddanges to the
formal parameter in the subprogram should propagate batletactual parameter in the caller.

It is normally implemented by copying, but can be done by aliog a write-protectedccess path
to the actual parameter.

e With copying, write protection of the actual parameter isyea the subprogram has no
accessto it

CSC 433 Programming Languages Fall 2012

e However, copying requires extra space, as there are nowi@s;@nd extra time, as the copy
must be performed

e With an access path, there is the expense of enforcing wigtegtion and access is slower
through indirect references

This is the parameter passing method of choice for most mddaguages, including C/C++, C#,
Java, Pascal, Ruby, Scheme.

Call by Reference

With call by referencethe formal parameter is a reference to the memory locatidheoactual
parameter.

This is used in Pascal (with thear keyword) and C++ with thé& operator.

See Example:
/ home/ cs433/ exanpl es/ cal | byref/cal | byref. cpp

This is efficient, eliminating the copy and extra storagedeekefor call by value, but access is
slower because of the indirection.

It also introduces potential side effects and aliases.
C appears to have a call by reference, but it is really a calidiye where the values are pointers.

See Example:
/ home/ cs433/ exanpl es/ cal | byref/cpointers.c

All object parameters in Java are passed by reference.

Call by Result

With call by result no information is initially transmitted to the subprogrémough the parameter.
The formal parameter acts like a local variable in the sufp@nm, then its final value is sent back
to the actual parameter (by copying).

A few problems that can arise:
e If we have
f(x, x);

which formal parameter from insidewill be copied back tx last?

e If we have

flafi], i);

CSC 433 Programming Languages Fall 2012

do we use the original to find the appropriate array entry to copy back to, or thematy-
modifiedi ?

Both C# and Ada provide call by result by specifying thet keyword to a parameter.

Call by Value-Result

A parameter passed byal ue-resul t is a combination of call by value in that the formal
parameter is initialized using the actual parameter'sejabind call by result in that the formal
parameter’s final value is copied back to the actual pararaetbe end of the subprogram.

This differs from call by reference in that the formal par&ene have local storage during the
execution of the subprogram.

Ada supports this by using both th@ andout keywords.

Call by Name

With call by nameparameters, parameters are passed by a textual substitddiowever, it is
difficult to implement and is not used by any major language.

The idea is sometimes used at compile time, for example in Giameuse thétdef i ne mecha-
nism to define macros that act like call by name.

#defi ne SAFE_MALLOC(v, type, size) \
{ v = (type) malloc(size) ; \
if (v == NULL) { \
fflush(stdout); \
fprintf(stderr,"in file %, line %, failed to allocate % d bytes",\
__FILE_, LINE__,size); \
exit(1l); \
P\

ALGOL 60 did implement call by name. This allowed for a pragraing technique called
Jensen’s Device

On the web: Wikipedia article “Jensen’s Device” at
http://en.w ki pedi a. org/ wi ki / Jensen’ s_devi ce

Implementing Parameter-Passing
In most languages parameter communication takes placéh@mun-time stack

Pass-by-reference are the simplest to implement; only dread is placed in the stack

CSC 433 Programming Languages Fall 2012

Overloaded Subprograms

An overloaded subprograns one that has the same name as another subprogram in the same
referencing environment.

This is included in languages including Ada, Java, C++, and @ resolution of which should
be used for a specific call is based on which definition’s proitanatches the call.

See Example:
/ homre/ cs433/ exanpl es/ over | oad

Indirect Subprogram Calls

Sometimes, we do not know until runtime which subprogranhiéed to be called for a particular
run of a program.

In C and C++, this is accomplished throufgimction pointers Examples where this is used include

e callback functionswhich are functions passed as parameters to a functioratkatio be
called by that function to perform part of their task

On the web: “Callback” on Wikipedia at
http://en.w ki pedi a. or g/ wi ki/ Cal | back_(conput er _pr ogr amm ng)
¢ the function to call upon creation of a new thread (as in POBI¥ads)

See Example:
/ homre/ cs433/ exanpl es/ pt hr eadhel | o

Generic Subprograms
A genericor polymorphic subprogrartekes parameters of different types on different activesio
We saw exampels of overloaded subprograms, which praddsoc polymorphism

With subtype polymorphispa parameter of typ& can access any object of tyjgeor any type
derived fromT (in object-oriented programming languages).

We will primarily considemparametric polymorphisgrwhere a subprogram can takéype param-
eter.

The text described generic subprograms in C++, which usdsehpl at e keyword:

tenpl ate <cl ass Type>
Type max(Type first, Type second) {
return first > second ? first : second;

}

CSC 433 Programming Languages Fall 2012

The functionmax can then be called with any datatype for its parameters, tandl ireturn the
appropriate type. We can try it:

See Example:
/ home/ cs433/ exanpl es/ cppgeneric

Notice that in C++, th@ype can be either a primitive type or a class.

In Java, where generic have been supported since versiptypéparameters must be classes.
With autoboxingand autounboxingwhere needed conversions are automatically made between
the primitive types €.g, i nt, doubl e, etc) and theirQbj ect containers €.g, | nt eger,
Doubl e, etc), this is less of a restriction than it may at first seem.

Some examples:

See Example:
/ hone/ cs433/ exanpl es/ j avageneric

This example also includes generic classes in additiontemgemethods. Worth a look now, even
though it’'s not part of the subprogram topic.

