
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Topic Notes: Functional Programming with Scheme

Our next topic is to look at a different programming paradigm: functional programming. Recall
from the first week of class, the following brief descriptionof functional programming languages:

“The primary mechanism for computing in a functional language is, unsurprisingly, the application
of (often recursive) functions to parameters.

• pure functional programming has no variables or assignmentstatements!

• very convenient in some contexts

• not well-suited for others

• functional languages are usually interpreted rather than compiled”

Functional languages generally have a much simpler and “cleaner” syntax than object-oriented/imperative
languages. This has led to the adoption of functional languages as a first language for introductory
computer science courses at some schools.

Mathematical Basis of Functional Languages
Those who have taken some college mathematics have probablyseen the idea ofcomposite func-
tions:

F (x) ◦G(x) = F (G(x))

We would read this “F follows G” or “F of G of x”. It means we form a new function by first
applyingG thenF .

In functional programming, we combine often simple functions to build more complex ones.

We will also seehigher-order functions (or, functional forms), where a function receives functions
as parameters and/or returns a function as a result.

This can be done in some conventional programming languages(passing of function pointers in
C), but it is much more natural in a functional programming language.

Introduction to Scheme

CSC 433 Programming Languages Fall 2012

The specific language we will study most in this context is called Scheme.

Scheme was developed from the successful functional language LISP by Sussman and Steele in
1975. The first Scheme compiler appeared in 1978. The most popular standard (R5RS) was
developed in 1998.

There are a number of implementations of Scheme, one of whichis called MIT/GNU Scheme,
which is (unsurprisingly) developed at MIT.

We have it installed on mogul, and you can run it by issuing thescheme command.

Launching the program enters into MIT/GNU Scheme’s “read-eval-print loop” (REPL) and we are
issued a prompt. To start, we will just type in some examples at this prompt.

MIT/GNU Scheme running under GNU/Linux
Type ‘ˆC’ (control-C) followed by ‘H’ to obtain information about interrupts.

Copyright (C) 2011 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Tuesday November 8, 2011 at 10:45:46 PM
Release 9.1.1 || Microcode 15.3 || Runtime 15.7 || SF 4.41
LIAR/x86-64 4.118 || Edwin 3.116

1]=>

This prompt tells us that we are at “level 1” in the interpreter. That number can change as we
interact with the system.

First, we can specify some numeric values to Scheme:

1]=> 1

;Value: 1

All that did was cause the number to be echoed back to us. But it does tell us something – the
REPL evaluated our input as “1” and printed it back.

We can specify any integer or floating-point value in this fashion, and we should get our number
back.

We can also specify boolean values, which in Scheme are specified by#t and#f

1]=> #f

;Value: #f

2

CSC 433 Programming Languages Fall 2012

1]=> #t

;Value: #t

What if we try to evaluate a word?

1]=> proglang

;Unbound variable: proglang
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of proglang.
; (RESTART 2) => Define proglang to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error>

That seems much less successful. Scheme expected the word tobe a variable name, and we have
not defined any variable with that name.

We will not worry yet about the restart options, but note thatthe prompt has changed. The “2” tells
us we are not operating at level number 2 because of the error.If all we want to do is to get back
to level number 1, we can type “Ctrl-g” to move back a level.

However, we can echo text back if we give Scheme a string literal:

1]=> "Hello"

;Value 13: "Hello"

Having Scheme echo back values we type isn’t especially exciting. Fortunately, we can ask it to
compute things. Let’s try some addition:

1]=> 2 + 2

;Value: 2

1]=>
;Value 13: #[arity-dispatched-procedure 13]

1]=>
;Value: 2

1]=>

3

CSC 433 Programming Languages Fall 2012

That doesn’t seem very good. We never got a “4” and we got some bizarre message in the middle.
Scheme has interpreted our command as three separate commands, somehow evaluating “+” to 13.

The syntax of addition in Scheme is different. It is afunction and functions in Scheme are specified
aslists. They are in prefix notation inside of parentheses, where thefirst element of the list is the
name of the function and the remaining list items are the parameters:

1]=> (+ 2 2)

;Value: 4

Better!

We can also use other operators and include more than 2 operands:

1]=> (- 6 3)

;Value: 3

1]=> (* 7 2 4)

;Value: 56

1]=> (/ 9 2)

;Value: 9/2

1]=> (/ 9 2.0)

;Value: 4.5

1]=> (+ 1 2 3 4 5)

;Value: 15

Furthermore, a function operand can itself be a function call:

1]=> (* (+ 4 9) (- 8 4))

;Value: 52

Earlier, we saw that when we typed a word, Scheme tried to interpret it as a variable. So we can
set values of variables and use them in expressions.

4

CSC 433 Programming Languages Fall 2012

1]=> (define temperature 56)

;Value: temperature

1]=> temperature

;Value: 56

1]=> (* temperature 4)

;Value: 224

1]=> (define temperature (- temperature 4))

;Value: temperature

1]=> temperature

;Value: 52

Consider this example:

1]=> (define radius 2)

;Value: radius

1]=> (define pi 3.14159)

;Value: pi

1]=> (define area (* pi radius radius))

;Value: area

1]=> area

;Value: 12.56636

If we change the value ofradius at this point, should we expect the area to be updated?

1]=> (define radius 3)

;Value: radius

5

CSC 433 Programming Languages Fall 2012

1]=> area

;Value: 12.56636

It doesn’t updatearea , but why would we expect it to? If we had the following sequence in a Java
program, how would it behave?

radius = 2;
area = Math.PI * radius * radius;
System.out.println(area);
radius = 3;
System.out.println(area);

Thearea would only be updated again if we recomputed it.

Or... if we made area a method:

radius = 2;
System.out.println(area(radius));
radius = 3;
System.out.println(area(radius));

We can do the same here:

1]=> (define radius 2)

;Value: radius

1]=> (define (area) (* pi radius radius))

;Value: area

1]=> (area)

;Value: 12.56636

1]=> (define radius 3)

;Value: radius

1]=> (area)

;Value: 28.274309999999996

6

CSC 433 Programming Languages Fall 2012

We have defined a function, albeit not a very nice one since it relies on two variables being defined.

But we can see that when wedefine something in parentheses, we are defining it to be a function.

Soon we will see that this is just a shorthand way of specifying this:

1]=> (define area (lambda () (* pi radius radius)))

;Value: area

1]=> (define pi 3.14159)

;Value: pi

1]=> (define radius 3)

;Value: radius

1]=> (area)

;Value: 28.274309999999996

1]=>

Getting around MIT/GNU Scheme

Before we continue with more Scheme, here are some handy things to know about using MIT/GNU
Scheme.

To quit and return to the Unix prompt, issue the command

(exit)

We can have Scheme print messages for us to the console outputwith thewrite function.

Alternately, hit the<Ctrl-d> key at the prompt.

1]=> (write "Hello, World!")
"Hello, World!"
;Unspecified return value

Alternately, we can usedisplay , and we will get our output without the quotes.

So we have the equivalent ofprintf or System.out.println .

We can also write programs in our favorite text editor and load them into MIT/GNU Scheme.

7

CSC 433 Programming Languages Fall 2012

See Example:
/home/cs433/examples/hello scheme

The example shows us another important feature: the; character is used to start a single-line
comment in Scheme.

If our program is in a filehello.scm , we can load it in one of two ways: with a command-line
parameter when we launch GNU/Scheme:

% scheme -load hello.scm
MIT/GNU Scheme running under MacOSX
Type ‘ˆC’ (control-C) followed by ‘H’ to obtain information about interrupts.

Copyright (C) 2011 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Thursday September 27, 2012 at 9:18:00 PM
Release 9.1.1 || Microcode 15.3 || Runtime 15.7 || SF 4.41 || LIAR/C 4.118
Edwin 3.116

;Loading "hello.scm"..."Hello, Scheme World!"
;... done

1]=>

In this case, our output is printed hidden away next to a message that we are loading the specified
file.

We can also launch Scheme first, then use theload function.

1]=> (load "hello.scm")

;Loading "hello.scm"..."Hello, Scheme World!"
;... done
;Unspecified return value

Or if we wanted to have something in the file that defines some functions and variables so we can
then make use of it:

See Example:
/home/cs433/examples/area/area.scm

This definespi as a variable andarea as a function. Then if we defineradius appropriately
and call thearea function, it should produce the result we want.

1]=> (load "area.scm")

8

CSC 433 Programming Languages Fall 2012

;Loading "area.scm"... done
;Value: area

1]=> (define radius 2.5)

;Value: radius

1]=> (area)

;Value: 19.6349375

1]=>

Next, we look back at the case where we attempted to use a valuewe hadn’t defined. Specifically,
let’s see what happens if we load ourarea function when we haven’t definedradius .

1]=> (area)

;Unbound variable: radius
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of radius.
; (RESTART 2) => Define radius to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error>

We see Scheme has given us three options, in addition to a fourth option which is “ignore the
problem and start working at the level 2 REPL”.

Try each out, and see how Scheme lets us recover from errors ina variety of ways.

We can also use theread function to obtain a value from the terminal and use it however we’d
like.

See Example:
/home/cs433/examples/area/area input.scm

So we have basic I/O capabilities and we can define variables and functions, and call those func-
tions.

However, this is not how we normally want to call a function – requiring that a particular variable
is defined and has an appropriate value. We want to passparameters. We can do just that:

See Example:
/home/cs433/examples/area/area function.scm

9

CSC 433 Programming Languages Fall 2012

This program defines thearea function to have a single parameter namedradius . We can then
use that parameter inside the function.

Note that now, we can callarea and pass it a parameter. In the program, that value is the return
of theread function.

Once the program is loaded, we can call it with any parameterswe wish.

Data Types in Scheme
Scheme supports a rich set of data types.

Numeric Data

We have seen that Scheme can manipulate integer, real (what most languages would call floating
point), and boolean data.

It also includes some more unusual numeric types: rational and complex.

Scheme maintains an important property about the numbers ituses: theirexactness:

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Exactness.html#Exactness

In most languages, we know that some values (in particular, floating point values) are approxima-
tions. Scheme formalizes this so we can tell whether a given numeric value is exact or inexact.

Scheme provides functions that can tell us if a number is exact or inexact. These are a special class
of functions calledpredicates that test their parameter for some condition and return a boolean
result:

1]=> (exact? 1)

;Value: #t

1]=> (inexact? 1)

;Value: #f

1]=> (exact? (/ 1 3))

;Value: #t

1]=> (exact? (/ 1.0 3.0))

;Value: #f

There are a wide variety of operators we can use on numeric data as well.

10

CSC 433 Programming Languages Fall 2012

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Numerical-operations.html#Numerical-operations in the Scheme documenta-
tion for some examples.

The first several there are predicates that check whether a value is a valid instance of a given type.

Strings and Characters

We have already seen how we can deal with string constants in Scheme.

We can specify character constants (the equivalent of single-quoted char constants in C/C++/Java):

#\a
#\space

There are many operations on characters, most of which are not important for our purposes.

A few that may be of interest:

1]=> (char-upper-case? #\a)

;Value: #f

1]=> (char-lower-case? #\a)

;Value: #t

1]=> (char-alphabetic? #\Z)

;Value: #t

1]=> (char-numeric? #\x)

;Value: #f

1]=> (char-numeric? #\4)

;Value: #t

There are several functions we can use to construct and manipulate strings – we will go through
some as seen on

http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Strings.html#Strings

Lists

11

CSC 433 Programming Languages Fall 2012

Lists are a fundamental data structure in Scheme, and its predecessor language, LISP.

An atom is an individual element of some primitive type.

A list is a collection of atoms and/or lists. Typically, a list is represents as apair of items<A, B> ,
whereA is the first item of the list (called thecar), andB is the rest of the list (called thecdr). This
is basically a linked list representation.

Before we look at some more detailed examples, note that we canspecify symbols (usually words)
without having Scheme attempt to evaluate them by placing a’ in front of them.

1]=> ’x

;Value: x

This is a shorthand for

1]=> (quote x)

;Value: x

If we left off the ’ or quote function, we would get an error:

1]=> x

;Unbound variable: x

We can also use this to introduce lists into our Scheme programs:

1]=> ’(a b c)

;Value 2: (a b c)

Without the’ , Scheme would try to evaluate and look for a functiona and pass it parametersb
andc .

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Lists.html#Lists

Most of the terminology here is important.

Many but not all of the functions are ones we will make use of. Some to look at in particular:

cons , xcons , car , cdr , caar (and friends),list . Some extra examples of these:

12

CSC 433 Programming Languages Fall 2012

1]=> (car ’(a b c))

;Value: a

1]=> (car ’(((a b) c) d (e)))

;Value 2: ((a b) c)

1]=> (cdr ’(a b c))

;Value 3: (b c)

1]=> (cdr ’(((a b) c) d (e)))

;Value 4: (d (e))

1]=> (cons ’this ’(is weird stuff))

;Value 5: (this is weird stuff)

1]=> (cons ’((goofy)) ’((pluto minnie) mickey))

;Value 6: (((goofy)) (pluto minnie) mickey)

1]=> (cons (car ’(a b c)) ’(big cow))

;Value 7: (a big cow)

1]=> (car (cons (cdr ’(not much doing)) ’(this part goes away)))

;Value 8: (much doing)

1]=> (car ’(cons ’a ’(b c)))

;Value: cons

1]=> (list ’a ’b)

;Value 9: (a b)

1]=> (append ’(a) ’(b))

;Value 10: (a b)

1]=> (list ’(a b (c)) ’d ’e)

13

CSC 433 Programming Languages Fall 2012

;Value 11: ((a b (c)) d e)

1]=> (append ’(h (e) f)
’(i (j) k)
’(a b c))

;Value 12: (h (e) f i (j) k a b c)

1]=> (append () ’(a b c))

;Value 13: (a b c)

More functions to look at:

make-list , iota , list? , length , null? , first .. tenth , sublist , list-head ,
list-tail , append , the filtering functionsfilter , remove , andpartition .

Mapping
One of the great powers of a functional language is the ability to map a function over a list.

For example, if we have lists of numbers, we can create a new list containing their elementwise
sums:

1]=> (map + ’(1 2 3) ’(4 5 6) ’(7 8 9))

;Value 14: (12 15 18)

This can be done with list functions:

1]=> (map car ’((alice has triangle hair) (dilbert wears a tie) (wally is lazy)))

;Value 16: (alice dilbert wally)

Or we can apply a function we define to each element of a list:

1]=> (map (lambda (n) (* n 2)) ’(7 23 1))

;Value 17: (14 46 2)

14

CSC 433 Programming Languages Fall 2012

Writing Functions
We would like to be able to write our own functions to perform complex tasks, using Scheme’s
builtin functions as building blocks.

We saw before how to define a function. Let’s do one with that will also let us practice with list
operations. We want to write a function that will work likecons , but which will construct a list
from 2 atoms and a list instead of 1 atom and a list.

See Example:
/home/cs433/examples/cons2

Conditionals

An essential building block for many tasks is the ability to make decisions – the conditional con-
struct. We rely on this in our imperative languages, and it plays a key role in functional program-
ming as well.

See:http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Conditionals.html#Conditionals

Scheme provides a straightforwardif function, as well as more general purposecond andcase
functions. There are also a number of predicates (some of which we have seen) as well as the
standard comparison functions for equality and inequality. We can also construct more complex
boolean expressions withnot , and , andor .

We proceed with some examples:

1]=> (< 2 4)

;Value: #t

1]=> (<= 3 3)

;Value: #t

1]=> (not #f)

;Value: #t

1]=> (if (< 4 5) ’x ’y)

;Value: x

1]=> (if (> 4 5) ’x ’y)

;Value: y

15

CSC 433 Programming Languages Fall 2012

1]=> (if (< 4 5) ’ifpart)

;Value: ifpart

1]=> (if (> 4 5) ’ifpart)

;Unspecified return value

1]=> (cond ((= 1 2) ’nope)
((not (= 1 2)) ’yep)

)

;Value: yep

1]=> (cond ((equal? ’a ’b) ’cow)
((member ’a ’(c b a d)) ’cat)
(#t ’dog)))

;Value: cat

Let’s practice using these to write some functions that can determine if a given list contains 2
elements. The function should work like this:

(elements2 ’(a b))

returns#t because its parameter is a list containing exactly 2 elements.

(elements2 ’(a b c))

returns#f , as its parameter is a list with 3 elements.

We will assume that the parameter passed in is in fact a list.

See Example:
/home/cs433/examples/elements2

Recursive Functions

Our next function demonstrates a cornerstone of functionalprogramming: arecursive function.

What’s everyone’s favorite recursive function (or at least one of them)? The factorial, of course.

We will use this rule to calculate a factorial:

fact(n) =

{

1 if n < 2
n · fact(n− 1) otherwise

16

CSC 433 Programming Languages Fall 2012

See Example:
/home/cs433/examples/factorial

How about a function that turns a list into a list of lists? We’ll call it listem .

For example, if we call

(listem ’(a b c))

we should get back

((a) (b) (c))

See Example:
/home/cs433/examples/listem

And next, a function to remove all instances of an element from a list and return a new list with
those instances removed.

So on this call:

(remove_all ’a ’(b a d a f a))

we should be returned the list

(b d f)

See Example:
/home/cs433/examples/remove all

For another example, we will write a function that takes a list as its parameter and returns another
list where any numbers in the list have been incrememented.

If we call:

(add1_num ’(8 bob (alice) 23 (3) dilbert))

would return

(9 bob (alice) 24 (3) dilbert)

But what if we want to find lists in any “sublists” so the above would become:

(9 bob (alice) 24 (4) dilbert)

17

CSC 433 Programming Languages Fall 2012

And for a more complex call (we’ll call this a “deep” function):

(add1_num_deep ’(hi (1 2 a) (10 (20) ((30 31) 100)) deep))

would produce

(hi (2 3 a) (11 (21) ((31 32) 101)) deep)

See Example:
/home/cs433/examples/add1 num

For a function that has similar structure but a different functionality, we will extract all numbers
from a (potentially nested) list.

(extract_numbers ’(a b c 1 2 3 a s c))

would return

(1 2 3)

and

(extract_numbers ’(hi (1 2 a) (10 (20) ((30 31) 100)) deep))

returns

(1 2 10 20 30 31 100)

See Example:
/home/cs433/examples/extract numbers

We can then modify it to add the numbers instead of extract a list of numbers. Notice the fact that
the operations to compute the result are all on numbers now (0for base case, addition to build the
result) instead of on lists (empty list for base case,cons /append to build the result).

But if we already have theextract numbers function and want to implementadd all numbers ,
there is a simpler way. The builtin functionapply takes a function and a list as its parameters and
calls that function with the list as its parameters.

We can use a recursive procedure to generate a list of prime numbers. One technique for generating
lists of primes is called the Sieve of Eratosthenes. The ideais as follows. We start with a list of all
of the numbers up to some upper limit, starting with 2. Our algorithm proceeds by working left to

18

CSC 433 Programming Languages Fall 2012

right through the list of numbers. For each number we encounter, we remove all of its multiples
(“cross them out”). When we get to the end of the list, everything remaining is a prime.

See Example:
/home/cs433/examples/sieve

We can first look at a C implementation (iterative) then a Scheme implementation (recursive).

Our next example involves sorting a list of numbers. We will look at the insertion sort.

See Example:
/home/cs433/examples/insertion sort

See the comments in the Scheme file for more.

Functions as parameters

But there is no need to write a function with such limited capabilities. This one can only work on
lists of numbers and sort them in increasing order.

Let’s instead build a more general insertion sort function that takes a comparison function in addi-
tion to the list to be sorted.

See Example:
/home/cs433/examples/general insertion sort

Again, see the comments in the file for details, but note the extra parameter to the sorting function
and its “insert one” helper, and the use of that parameter as the name of a function to call when it
comes time to compare two list elements to determine their relative order.

Armed with this general function, we can either use it directly by passing an appropriate function,
or define some other functions that operate on different kinds of lists and sorts them in different
ways.

Backtracking
Functional programming provides a convenient mechanism for implementation ofbacktracking
algorithms. With a backtracking algorithm, we try different alternatives at each decision point, in
turn, until we find a satisfactory solution.

A fundamental example here is maze running. If a choice to follow one path in the maze fails
(leads to a dead end), we go back (backtrack) to the most recent decision point and try a different
direction. If all directions from a given point have led to dead ends, we backtrack further to a prior
decision point and try a different alternative.

In Scheme, the general form of a backtracking algorithm looks like the following, wherestate
is the current state of the problem andmove is the next move to be attempted to get closer to a
solution.

(define (backtracker state move)

19

CSC 433 Programming Languages Fall 2012

(cond ((solution? state) state) ; a solution?
((no_move? move) #f) ; path failed
((illegal_move state move) ; cannot apply move to state, so

(backtracker state (next_move move))) ; try next move instead
((backtracker (make_move state) first_move)) ; make move and continue
(#t (backtracker state (next_move move))) ; prev move failed, try next

)
)

So what does this all mean? The easiest way to see is through anexample. Consider then-queens
problem, which is a generalization of the 8 queens problem. In this problem, we try to placen
queens on ann×n chess board such that no 2 queens can attack each other. For those not familiar
with the rules of chess, this means that no 2 queens can occupythe same row, column, or diagonal
on the board.

See Example:
/home/cs433/examples/nqueens

Again, the code in the example has comments describing the procedure.

Other Scheme Constructs
There is much more of Scheme we could consider:

• Definition of local names withlet and related constructs.

• Grouping of function calls (much like curly braces let us group statements in C/Java) with
begin .

• Iteration with the “namedlet ” anddo constructs.

We may touch on some of these as we discuss general programming language concepts and com-
pare how various languages handle them.

20

