Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2012

Topic Notes: Functional Programming with Scheme

Our next topic is to look at a different programming paradigonctional programming. Recall
from the first week of class, the following brief descriptioifunctional programming languages:

“The primary mechanism for computing in a functional lange&s, unsurprisingly, the application
of (often recursive) functions to parameters.
e pure functional programming has no variables or assignstatéments!
e Very convenient in some contexts
¢ not well-suited for others
¢ functional languages are usually interpreted rather tioampied”
Functional languages generally have a much simpler andrielé syntax than object-oriented/imperative

languages. This has led to the adoption of functional laggsias a first language for introductory
computer science courses at some schools.

Mathematical Basis of Functional Languages

Those who have taken some college mathematics have profedythe idea afomposite func-
tions:

F(z) o G(x) = F(G(x))
We would read this F' follows G” or “ F' of G of z”. It means we form a new function by first
applyingG thenF'.
In functional programming, we combine often simple funetido build more complex ones.

We will also seehigher-order functions (or, functional forms), where a function receives functions
as parameters and/or returns a function as a result.

This can be done in some conventional programming languggesing of function pointers in
C), but it is much more natural in a functional programmingglaage.

| ntroduction to Scheme

CSC 433 Programming Languages Fall 2012

The specific language we will study most in this context isechEcheme.

Scheme was developed from the successful functional laygguESP by Sussman and Steele in
1975. The first Scheme compiler appeared in 1978. The moastlgpoptandard (R5RS) was
developed in 1998.

There are a number of implementations of Scheme, one of whichlled MIT/GNU Scheme,
which is (unsurprisingly) developed at MIT.

We have it installed on mogul, and you can run it by issuingsitteeme command.

Launching the program enters into MIT/GNU Scheme’s “reaal-@rint loop” (REPL) and we are
issued a prompt. To start, we will just type in some exampiéisia prompt.

MIT/GNU Scheme running under GNU/Linux
Type “C’ (control-C) followed by ‘H’ to obtain information about interrupts.

Copyright (C) 2011 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Tuesday November 8, 2011 at 10:45:46 PM
Release 9.1.1 || Microcode 15.3 || Runtime 15.7 || SF 4.41
LIAR/x86-64 4.118 || Edwin 3.116

11]=>

This prompt tells us that we are at “level 1” in the interpret&€hat number can change as we
interact with the system.

First, we can specify some numeric values to Scheme:
1]=>1

:Value: 1

All that did was cause the number to be echoed back to us. Buks tell us something — the
REPL evaluated our input as “1” and printed it back.

We can specify any integer or floating-point value in thihfas, and we should get our number
back.

We can also specify boolean values, which in Scheme arefigueby#t and#f

1]=> #f

:Value: #f

CSC 433 Programming Languages Fall 2012

1]=> #t

Value: #t
What if we try to evaluate a word?

1]=> proglang

;Unbound variable: proglang

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of proglang.
; (RESTART 2) => Define proglang to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

That seems much less successful. Scheme expected the waecteariable name, and we have
not defined any variable with that name.

We will not worry yet about the restart options, but note thatprompt has changed. The “2” tells
us we are not operating at level number 2 because of the éradrwe want to do is to get back
to level number 1, we can type “Ctrl-g” to move back a level.

However, we can echo text back if we give Scheme a stringliter

1]=> "Hello"

‘Value 13: "Hello"

Having Scheme echo back values we type isn't especiallytiegciFortunately, we can ask it to
compute things. Let’s try some addition:

1]=> 2 + 2
‘Value: 2

1=
:Value 13: #[arity-dispatched-procedure 13]

1]=>
:Value: 2

11]=>

CSC 433 Programming Languages Fall 2012

That doesn’'t seem very good. We never got a “4” and we got sonaerb message in the middle.
Scheme has interpreted our command as three separate cdsyrs@amehow evaluating “+” to 13.

The syntax of addition in Scheme is different. It iBiaction and functions in Scheme are specified
aslists. They are in prefix notation inside of parentheses, wherdisteclement of the list is the
name of the function and the remaining list items are thematers:

1]=> (+ 2 2)
‘Value: 4

Better!

We can also use other operators and include more than 2 @seran
11]=> (6 3

;Value: 3

11=> (* 72 4)

:‘Value: 56

1]=> (9 2)

;Value: 9/2

11=> (/ 9 2.0)

;Value: 4.5

1]=>(+1234H5)

;Value: 15
Furthermore, a function operand can itself be a functioh cal

1= (* (+49 (-84)

‘Value: 52

Earlier, we saw that when we typed a word, Scheme tried topreeit as a variable. So we can
set values of variables and use them in expressions.

CSC 433 Programming Languages

1]=> (define temperature 56)

;Value: temperature

1]=> temperature

‘Value: 56

1]=> (* temperature 4)

:Value: 224

1]=> (define temperature (- temperature 4))
;Value: temperature

1]=> temperature

;Value: 52

Consider this example:

1]=> (define radius 2)

;Value: radius

1]=> (define pi 3.14159)

Value: pi

1]=> (define area (* pi radius radius))
;Value: area

1]=> area

:Value: 12.56636

Fall 2012

If we change the value afdius at this point, should we expect the area to be updated?

1]=> (define radius 3)

:Value: radius

CSC 433 Programming Languages Fall 2012

1]=> area

‘Value: 12.56636

It doesn’t updatarea , but why would we expect it to? If we had the following sequeirca Java
program, how would it behave?

radius = 2;

area = Math.PI * radius * radius;
System.out.printin(area);

radius = 3;

System.out.printin(area);

Thearea would only be updated again if we recomputed it.

Or... if we made area a method:

radius = 2;
System.out.printin(area(radius));
radius = 3;

System.out.printin(area(radius));

We can do the same here:

1]=> (define radius 2)

;Value: radius

1]=> (define (area) (* pi radius radius))
;Value: area

1]=> (area)

:‘Value: 12.56636

1]=> (define radius 3)

;Value: radius

1]=> (area)

;Value: 28.274309999999996

CSC 433 Programming Languages Fall 2012

We have defined a function, albeit not a very nice one sin@i&s on two variables being defined.
But we can see that when wlefine something in parentheses, we are defining it to be a function.

Soon we will see that this is just a shorthand way of speafyims:

1]=> (define area (lambda () (* pi radius radius)))
;Value: area

1]=> (define pi 3.14159)

;Value: pi

1]=> (define radius 3)

;Value: radius

1]=> (area)

;Value: 28.274309999999996

11=>

Getting around MIT/GNU Scheme

Before we continue with more Scheme, here are some handsttamkgow about using MIT/GNU
Scheme.

To quit and return to the Unix prompt, issue the command
(exit)

We can have Scheme print messages for us to the console autiptihe write function.

Alternately, hit the<Ctrl-d> key at the prompt.

1]=> (write "Hello, World!")
"Hello, World!"
;Unspecified return value

Alternately, we can usdisplay , and we will get our output without the quotes.
So we have the equivalent pfintf or System.out.printin

We can also write programs in our favorite text editor andllteem into MIT/GNU Scheme.

7

CSC 433 Programming Languages Fall 2012

See Example:
/home/cs433/examples/hello _scheme

The example shows us another important feature:; tleharacter is used to start a single-line
comment in Scheme.

If our program is in a fildhello.scm , we can load it in one of two ways: with a command-line
parameter when we launch GNU/Scheme:

% scheme -load hello.scm
MIT/GNU Scheme running under MacOSX
Type “C’ (control-C) followed by ‘H’ to obtain information about interrupts.

Copyright (C) 2011 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Thursday September 27, 2012 at 9:18:00 PM
Release 9.1.1 || Microcode 15.3 || Runtime 15.7 || SF 4.41 || LIAR/C 4.118
Edwin 3.116

;Loading "hello.scm"..."Hello, Scheme World!"

... done

1 1]=>
In this case, our output is printed hidden away next to a ngesdat we are loading the specified

file.

We can also launch Scheme first, then usddhd function.

1]=> (load "hello.scm")

;Loading "hello.scm"..."Hello, Scheme World!"
;... done
;Unspecified return value

Or if we wanted to have something in the file that defines sometions and variables so we can
then make use of it:

See Example:
/home/cs433/examples/area/area.scm

This definei as a variable andrea as a function. Then if we defimadius appropriately
and call thearea function, it should produce the result we want.

1]=> (load "area.scm")

CSC 433 Programming Languages Fall 2012

;Loading "area.scm"... done
;Value: area

1]=> (define radius 2.5)
;Value: radius

1]=> (area)

;Value: 19.6349375

11=>

Next, we look back at the case where we attempted to use awallradn’'t defined. Specifically,
let’'s see what happens if we load area function when we haven’t defineddius

1]=> (area)

;Unbound variable: radius

;To continue, call RESTART with an option number:

;. (RESTART 3) => Specify a value to use instead of radius.
; (RESTART 2) => Define radius to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

We see Scheme has given us three options, in addition to &hfoption which is “ignore the
problem and start working at the level 2 REPL".

Try each out, and see how Scheme lets us recover from errargarety of ways.

We can also use thead function to obtain a value from the terminal and use it howeve'd
like.

See Example:
/home/cs433/examples/areal/area _input.scm

So we have basic 1/0 capabilities and we can define variablgd$uactions, and call those func-
tions.

However, this is not how we normally want to call a functioreguiring that a particular variable
is defined and has an appropriate value. We want toassneters. We can do just that:

See Example:
/home/cs433/examples/areal/area _function.scm

CSC 433 Programming Languages Fall 2012

This program defines therea function to have a single parameter namadius . We can then
use that parameter inside the function.

Note that now, we can cadlrea and pass it a parameter. In the program, that value is thenretu
of theread function.

Once the program is loaded, we can call it with any parametensish.

Data Typesin Scheme

Scheme supports a rich set of data types.

Numeric Data

We have seen that Scheme can manipulate integer, real (vdsdi@mguages would call floating
point), and boolean data.

It also includes some more unusual numeric types: ratiamhcamplex.
Scheme maintains an important property about the numbesge#: theiexactness:

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Exactness.html#Exactness

In most languages, we know that some values (in particutatifig point values) are approxima-
tions. Scheme formalizes this so we can tell whether a givenenic value is exact or inexact.

Scheme provides functions that can tell us if a number istexanexact. These are a special class
of functions calledoredicates that test their parameter for some condition and return deboo
result:

1]=> (exact? 1)

Value: #t

1]=> (inexact? 1)

;Value: #f

1]=> (exact? (/ 1 3))

Value: #t

1]=> (exact? (/ 1.0 3.0))

;Value: #f

There are a wide variety of operators we can use on numecagawvell.

10

CSC 433 Programming Languages Fall 2012

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Numerical-operations.html#Numerical-operations in the Scheme documenta-
tion for some examples.

The first several there are predicates that check whethdue iga valid instance of a given type.

Stringsand Characters
We have already seen how we can deal with string constantshiente.

We can specify character constants (the equivalent ofesiggbted char constants in C/C++/Java):

#\a
#\space

There are many operations on characters, most of which aienportant for our purposes.

A few that may be of interest:

1]=> (char-upper-case? #\a)
;Value: #f

1]=> (char-lower-case? #\a)
Value: #t

1]=> (char-alphabetic? #\2)
;Value: #t

1]=> (char-numeric? #\x)
Value: #f

1]=> (char-numeric? #\4)
;Value: #t

There are several functions we can use to construct and matepstrings — we will go through
some as seen on

http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Strings.html#Strings

Lists

11

CSC 433 Programming Languages Fall 2012

Lists are a fundamental data structure in Scheme, and ittepessor language, LISP.
An atomis an individual element of some primitive type.

A list is a collection of atoms and/or lists. Typically, a list ipresents aspair of items<A, B>,
whereA is the first item of the list (called thear), andB is the rest of the list (called theglr). This
is basically a linked list representation.

Before we look at some more detailed examples, note that wepssnify symbols (usually words)
without having Scheme attempt to evaluate them by placingnafront of them.

11]=> %

‘Value: x
This is a shorthand for

1]=> (quote x)

‘Value: x

If we left off the’ or quote function, we would get an error:

1]=>x

:Unbound variable: x

We can also use this to introduce lists into our Scheme pragjra

1]=>"'@bc

:Value 2: (a b ¢)

Without the’ , Scheme would try to evaluate and look for a functeoand pass it parametebs
andc.

Seehttp://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Lists.html#Lists

Most of the terminology here is important.
Many but not all of the functions are ones we will make use o8 to look at in particular:

cons , xcons , car , cdr , caar (and friends)list . Some extra examples of these:

12

CSC 433 Programming Languages

1]=> (car ‘@@ b c))

Value: a

1]=> (car '(((a b) c) d (e)))

Value 2: ((a b) c)

1]=> (cdr '(a b c))

Value 3: (b c)

1]=> (cdr *(((a b) c) d (e)))

Value 4: (d (e))

1]=> (cons 'this ’(is weird stuff))

Value 5: (this is weird stuff)

1]=> (cons ’((goofy)) '((pluto minnie) mickey))
Value 6: (((goofy)) (pluto minnie) mickey)
1]=> (cons (car '(a b c)) ’(big cow))

;Value 7: (a big cow)

1]=> (car (cons (cdr ’(not much doing)) ’'(this part goes away)))

Value 8: (much doing)
1]=> (car '(cons 'a (b c)))
Value: cons

1]=> (list 'a 'b)

Value 9: (a b)

1]=> (append ‘(a) '(b))
Value 10: (a b)

1]=> (list '@ b (c)) 'd e)

13

Fall 2012

CSC 433 Programming Languages Fall 2012

Value 11: ((a b (c)) d e)
1]=> (append ’'(h (e) f)
(i () k)
'(a b c))
Value 12: (h (e) fi () k a b ¢)
1]=> (append () '(a b c))

:Value 13: (a b ¢)

More functions to look at:

make-list , iota , list? ,length , null? , first .. tenth , sublist , list-head
list-tail , append , the filtering functiondilter , remove , andpartition
Mapping

One of the great powers of a functional language is the ghditmap a function over a list.

For example, if we have lists of numbers, we can create a rgtwedntaining their elementwise
sums:

1]=> (map + '(1 2 3) '(4 5 6) (7 8 9)

Value 14: (12 15 18)
This can be done with list functions:

1]=> (map car ’((alice has triangle hair) (dilbert wears a tie) (wally is lazy)))

:Value 16: (alice dilbert wally)
Or we can apply a function we define to each element of a list:

1]=> (map (lambda (n) (* n 2) (7 23 1))

Value 17: (14 46 2)

14

CSC 433 Programming Languages Fall 2012

Writing Functions

We would like to be able to write our own functions to perforomplex tasks, using Scheme’s
builtin functions as building blocks.

We saw before how to define a function. Let’s do one with thditaiso let us practice with list
operations. We want to write a function that will work likens , but which will construct a list
from 2 atoms and a list instead of 1 atom and a list.

See Example:
/home/cs433/examples/cons2

Conditionals

An essential building block for many tasks is the ability tak®a decisions — the conditional con-
struct. We rely on this in our imperative languages, andaygla key role in functional program-
ming as well.

See:http://lwww.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
Conditionals.html#Conditionals

Scheme provides a straightforwafd function, as well as more general purpeasad andcase
functions. There are also a number of predicates (some afhmiie have seen) as well as the
standard comparison functions for equality and inequalityz can also construct more complex
boolean expressions witiot , and, andor .

We proceed with some examples:

1]=> (< 2 4)
Value: #t
1]=> (<= 3 3)
;Value: #t
1]=> (not #f)
;Value: #t

1]=> (if (< 45)'x"y)
:Value: x
1]=>(f (> 45)x)

Value: y

15

CSC 433 Programming Languages Fall 2012

1]=> (if (< 4 5) ’ifpart)
;Value: ifpart

1]=> (if (> 4 5) ’ifpart)
;:Unspecified return value

1]=> (cond ((= 1 2) 'nope)

) ((not (= 1 2)) 'yep)

:Value: yep
1]=> (cond ((equal? 'a ’'b) 'cow)

((member 'a '(c b a d)) ’cat)
(#t 'dog)))

‘Value: cat

Let's practice using these to write some functions that caterdhine if a given list contains 2
elements. The function should work like this:

(elements2 ’(a b))
returns#t because its parameter is a list containing exactly 2 elesnent
(elements2 ’'(a b c))

returns#f , as its parameter is a list with 3 elements.
We will assume that the parameter passed in is in fact a list.

See Example:
/home/cs433/examples/elements2

Recursive Functions

Our next function demonstrates a cornerstone of functiprajramming: aecursive function.
What's everyone’s favorite recursive function (or at least of them)? The factorial, of course.
We will use this rule to calculate a factorial:

1 ifn <2
fact(n) = { n- fact(n —1) otherwise

16

CSC 433 Programming Languages Fall 2012

See Example:
/home/cs433/examples/factorial

How about a function that turns a list into a list of lists? Weall it listem

For example, if we call
(listem ’'(a b c))
we should get back

(@) (b) (c))

See Example:
/home/cs433/examples/listem

And next, a function to remove all instances of an elememnhfeolist and return a new list with
those instances removed.

So on this call:

(remove all 'a ’'(b a d a f a))

we should be returned the list

(b d 1)

See Example:
/home/cs433/examples/remove _all

For another example, we will write a function that takes tdssits parameter and returns another
list where any numbers in the list have been incrememented.

If we call:

(add1_num ’(8 bob (alice) 23 (3) dilbert))

would return

(9 bob (alice) 24 (3) dilbert)

But what if we want to find lists in any “sublists” so the aboveukbbecome:

(9 bob (alice) 24 (4) dilbert)

17

CSC 433 Programming Languages Fall 2012

And for a more complex call (we’ll call this a “deep” functipn
(add1l_num_deep ’'(hi (1 2 a) (10 (20) ((30 31) 100)) deep))
would produce

(hi (2 3 a) (11 (21) ((31 32) 101)) deep)

See Example:
/home/cs433/examples/addl _num

For a function that has similar structure but a differentctionality, we will extract all numbers
from a (potentially nested) list.

(extract_ numbers ‘(@b c 1 2 3 a s ¢))

would return

12 3

and

(extract_numbers ’(hi (1 2 a) (10 (20) ((30 31) 100)) deep))
returns

(3 2 10 20 30 31 100)

See Example:
/home/cs433/examples/extract _numbers

We can then modify it to add the numbers instead of extrast afinumbers. Notice the fact that
the operations to compute the result are all on numbers ndor (fase case, addition to build the
result) instead of on lists (empty list for base casms /append to build the result).

But if we already have thextract _numbers function and wantto implemeatdd _all _numbers ,
there is a simpler way. The builtin functi@pply takes afunction and a list as its parameters and
calls that function with the list as its parameters.

We can use arecursive procedure to generate a list of priméers. One technique for generating
lists of primes is called the Sieve of Eratosthenes. Theiglaa follows. We start with a list of all
of the numbers up to some upper limit, starting with 2. Oupðm proceeds by working left to

18

CSC 433 Programming Languages Fall 2012

right through the list of numbers. For each number we enesunte remove all of its multiples
(“cross them out”). When we get to the end of the list, evengtriemaining is a prime.

See Example:
/home/cs433/examples/sieve

We can first look at a C implementation (iterative) then a Sahéenplementation (recursive).
Our next example involves sorting a list of numbers. We widik at the insertion sort.

See Example:
/home/cs433/examples/insertion _sort

See the comments in the Scheme file for more.

Functions as par ameters

But there is no need to write a function with such limited calitéds. This one can only work on
lists of numbers and sort them in increasing order.

Let’s instead build a more general insertion sort functluat takes a comparison function in addi-
tion to the list to be sorted.

See Example:
/home/cs433/examples/general _insertion _sort

Again, see the comments in the file for details, but note thagarameter to the sorting function
and its “insert one” helper, and the use of that parametdreaaame of a function to call when it
comes time to compare two list elements to determine thigtive order.

Armed with this general function, we can either use it diseby passing an appropriate function,
or define some other functions that operate on differentkwfdists and sorts them in different
ways.

Backtracking

Functional programming provides a convenient mechanisnimiplementation ofoacktracking
algorithms. With a backtracking algorithm, we try diffetaiternatives at each decision point, in
turn, until we find a satisfactory solution.

A fundamental example here is maze running. If a choice toobne path in the maze fails
(leads to a dead end), we go back (backtrack) to the mosttrdeeision point and try a different
direction. If all directions from a given point have led tcadieends, we backtrack further to a prior
decision point and try a different alternative.

In Scheme, the general form of a backtracking algorithm $ddée the following, wherestate
is the current state of the problem amabve is the next move to be attempted to get closer to a
solution.

(define (backtracker state move)

19

CSC 433 Programming Languages Fall 2012

(cond ((solution? state) state) ; a solution?
((no_move? move) #f) ; path failed
((illegal_move state move) ; cannot apply move to state, so
(backtracker state (next_move move))) ; try next move instead
((backtracker (make_move state) first_move)) ; make move and continue
(#t (backtracker state (next_move move))) ; prev move failed, try next

So what does this all mean? The easiest way to see is throughaarple. Consider the-queens
problem, which is a generalization of the 8 queens problemthis problem, we try to place
gueens on an x n chess board such that no 2 queens can attack each otheroemtbt familiar
with the rules of chess, this means that no 2 queens can otloegame row, column, or diagonal
on the board.

See Example:
/home/cs433/examples/nqueens

Again, the code in the example has comments describing teegure.

Other Scheme Constructs

There is much more of Scheme we could consider:

e Definition of local names witlet and related constructs.

e Grouping of function calls (much like curly braces let usypatatements in C/Java) with
begin .

e Iteration with the “namedkt " and do constructs.

We may touch on some of these as we discuss general progrgrtanguage concepts and com-
pare how various languages handle them.

20

