Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2012

Topic Notes: Names and Bindings

We now turn our attention to the naming and binding of vagalb memory locations in program-
ming languages. We will look more carefully at some famitancepts such as what are legal
names, and what are the types, lifetimes, and scopes obiesia

Variables
We use variables in our programs all the time, usually withbinking much about it.

A variable is an abstraction of one or more memory locatidtrfsas attributes including

e aname
e an address (its “L-value”)
e avalue (its “R-value”)

e adatatype

e alifetime

e ascope

Names

Names for variables (and other identifiers in our programs)sabject to some important design
decisions:

e what characters can be used in names?
e are names case sensitive?

e are some names unavailable for general use (reserved Wweydsirds)?

If names are restricted to be too short, they cannot be asingdah

Some examples:

e Fortran 95: maximum of 31

CSC 433 Programming Languages Fall 2012

C99: no limit but only the first 63 are significant; also, extdrnames are limited to a
maximum of 31 (though gcc does not seem to suffer from thig)lim

C#, Ada, and Java: no limit, and all are significant

e C++: no limit, but implementers often impose one

Some simple BASIC implementations limit to 1 or 2 charac{Brs

Some languages also place further meaning on special ¢tbexagthin a name:

PHP: all variable names must begin with dollar signs

Perl: all variable names begin with special characters¢lwbpecify the variable’s type

Ruby: variable names that begin with @ are instance variatilese that begin with @@
are class variables

BASIC: variable names that end $hare strings

See Example:
/ home/ cs433/ exanpl es/ nanes/ per | _nanes. pl

Names in C-based languages are case sensitive, but manyastheages are not. This can cause
some problems with multi-language programmiegy, calling a Fortran subroutine from C.

See Example:
/ homre/ cs433/ exanpl es/ nanes/ casei nsensi tive. f 95

Special names includeeywordsandreserved words

e Keywords are special only in some contexts, and may be useather purposes in other
contexts.

e Reserved words can never be used except for their “specigtoga. Almost all languages
treat all of the special words this way.

e Alanguage may wish to limit the number of reserved words (COB@& 400!).

However, the terms are often used interchangeably.

On the web: C++ Keywords at
http://en. cppreference. coni w cpp/ keyword

Addresses

Any variable needs to have some address associated witlerevithcan store its value.

CSC 433 Programming Languages Fall 2012

A variable may have different addresses at different timesd execution

A variable may have different addresses at different placagprogram

If two variable names can be used to access the same mematiplgahey are calledliases

Aliases are created via pointers, reference variablesdCa#t unions

Aliases are harmful to readability (program readers museraber all of them)
In C:

int a[10];
int *b = a;

Here,a andb will appear to the reader of the program as two differentyarraut they are really
just two names for the same array.

Type

The type, or datatype, of a variable determines the rangealokes of variables and the set of
operations that are defined for values of that type.

For floating point data, the type also determines the pr@tigie., f | oat vsdoubl e).

Binding
Bindingis the association of a particular attribute to an entityrooperation to a symbol.

Binding Time: when does this binding occur?

e static binding

— takes place at compile time
— remains the same throughout the execution of the program

e dynamic binding

— binding first done at runtime
— binding may change during program execution

Or, looking at a wider time scale:

e language design time — bind operator symbols to operations

CSC 433 Programming Languages Fall 2012

language implementation time — bind floating point type tpecsic representation

compile time — bind a variable to a type in C or Java

load time — bind a C or C+st at i ¢ variable to a memory cell

run time — bind a nonstatic local variable to a memory cell

Type Bindings
Type bindings — the assignment of a datatype to a variablestaig for most languages.

In some languages, we accomplish the static binding wheneekaiek a variable we must give it a
type in addition to a name.

doubl e d;

In other languages, the type bindings are implicit. For eplammwe saw that BASIC variables are
numeric unless the name ends i$.aln FORTRAN 77, unless MPLI CI T NONE is specified,
variable identifiers are assumed to be ty]AL if they start with the letter&- Hand O Z, and

| NTEGERif they start with the letters- N.

This approach provides a small amount of convenience, mutezal to problems with reliability
(e.g, the use of an implicit variable when a different variableswaended).

With dynamic type binding, we do not need to specify a da@gfdeclaration.

In some cases, a type is bound to the variable when the valimbksigned a value. For example,
in JavaScript, we can declare a variable such as:

var X;
and later give it a value:
X = 7;

and that would result in the datatypexobeing an integer.

Later in the same program, we could reassign that varialderteething else:
X = [17.23, 9.1];

andx is now a list of floating point values.

See Example:
/ home/ cs433/ exanpl es/ nanes/ j s_bi ndi ng. ht n

4

CSC 433 Programming Languages Fall 2012

The necessitates runtime checking of datatypes to ensaratams on those values are appropriate
for the actual datatype. It also means we limit the errorsd¢ha be detected by the compiler.

Other languages uggpe inferencingHere, the language infers the datatype of variable based on
elements involved in the expression.

For astrongly typed languagénference makes many type declarations unnecessary.

Type checkings the activity of ensuring that the operands of an operatpacompatible types.

type coercioroccurs when an operand is converted to a type applicabletoutient opera-
tion

type errorsoccur if an operator is applied to an operand of an invaligtyp

a language is called strongly typed if all type errors candaggbt at compile time

type coercion weakens the typing system of a language

Storage Bindings

The assignment of memory locations to variables is catecage bindingKey ideas here:

e Allocation— the binding of a memory cell to a variable

e Deallocation— returning a cell back into the available memory pool

e Lifetimeof a variable — the time during which the variable is bound &pacific memory
location

We can categorize variables by their lifetimes:

e Static— bound to memory cells before execution begins and remainadto the same
memory cell throughout executioa,g, C and C++st at i ¢ variables in functions

See Example:
/ home/ cs433/ exanpl es/ nanes/ static.c

— advantages: efficiency (direct addressing), historyie@subprogram support
— disadvantage: lack of flexibility (no recursion)
— similar: class variablesn C++, Java.

e Stack-dynamie storage bindings are created for variables when theiadsobn statements
areelaborated (A declaration is elaborated when the executable codeciaed with it is
executed.)

— local variablesin C subprograms (not declarsd at i ¢c) and Java methods

5

CSC 433 Programming Languages Fall 2012

— allocated on theun-time stack
— advantage: allows recursion; conserves storage

— disadvantages: overhead of allocation and deallocatidipregrams cannot be history
sensitive, inefficient references (indirect addressing)

e Explicit heap-dynamie- allocated and deallocated by explicit directives, spedifiy the
programmer, which take effect during execution

— referenced only through pointers or refereneeg, dynamic objects in C++ (viaew
anddel et e), all objects in Java

— allocated from thdeap
— advantage: provides for dynamic storage management
— disadvantage: inefficient and unreliable

o Implicit heap-dynamie- allocation and deallocation caused by assignment statsme

— all variables in APL; all strings and arrays in Perl, Javg&cand PHP
— advantage: flexibility (generic code)
— disadvantages: inefficient, because all attributes aramja) loss of error detection

Scope

The scopeof a variable is the range of statements over which itisgble That is, the range of
statements where the variable’s bindings apply (where weusa it!).

Thelocal variablesof a program unit are those that are declared in that unit.

The nonlocal variablesof a program unit are those that are visible in the unit butdestlared
there.Global variablesare a special category of nonlocal variables.

Thescope ruleof a language determine how references to names are agsbaidth variables.
There are two major categoriest ati c orl exi cal scope, anddynamic scope

With static scope, the scope of a variable depends only opribgram text — it can be determined
completely at compile time. That is, any name can be condectea variable declaration (or
determined to be undeclared) by the compiler.

See Example:
/ home/ cs433/ exanpl es/ nanes/ JavaScope. j ava

We can tell exactly which variables are visible at each lihths Java program. If a name does
not match something in the local scope (local variables ardmeters), we look at the instance
and class variables.

CSC 433 Programming Languages Fall 2012

We can summarize the basic rule: a variable is visible umg} tthat matches thg most recently
preceding the declaration. An important exception ocauiG++, Java, and C#, where variables
declared irf or statements have their scope restricted tdf the construct.

An exception here is that the instance variables are onlgssiisle in norst at i ¢ methods.

Some names can lmaskedoy definitions in enclosed scopes (@ocky. C and C++ will allow
this at any level (a variable declared local tovai | e loop can mask a local variable within a
method/function), while Java does not permit this.

voi d sub() {
i nt count;
while (...) {
i nt count;
count ++;
}
}

The C-based languages.g, C99, C++, Java, and C#) allow variable declarations to appsar a
where a statement can appear (in the middle of a block). Qlelesions of C required that all
declarations appeared before any other statements.

In C99, C++, and Java, the scope of all local variables is froendixclaration to the end of the
block.

In C#, the scope of any variable declared in a block is the whiaek, regardless of the position
of the declaration in the block. However, a variable stillshioe declared before it can be used.

Hidden declarations can sometimes be accessed anywaygsbgtprependinghi s. before the
name of a Java instance variable that has been masked byl allpegiameter.

Related to this is theet construct in functional languages including Scheme.

See Example:
/ home/ cs433/ exanpl es/ nanes/ | et.scm

The namex1, x2, y1, y2 act similarly to local variables with a scope that lasts tigio the
remainder of theé et function. The main difference is that their values canneinge once set.

A better example improves on th&dex function we wrote for the practice midterm:

See Example:
/ home/ cs433/ exanpl es/ nanes/ betteri ndex. scm

Here, we avoid the potential of 2 redundant recursive calls.

This can be even more complex in languages that aflested subprogram definitionshich cre-
ate nested static scopes. This is the case in several laeguaguding Ada, JavaScript, Common
LISP, Scheme, Fortran 2003+, F#, and Python.

7

CSC 433 Programming Languages Fall 2012

See Example:
/ home/ cs433/ exanpl es/ nanes/js. htm

Here, the functionsubl andsub?2 only can be called from elsewhere in the enclosing function
set Message. Even thouglset Message callssubl, which in turn callssub?2, the variablex

in sub?2 refers to thex declared irset Message, even though its most recetdiynamicancestor
issubl.

If the language usedynamic scopingnstead, the search for nonlocal bindings would follow the
call history rather than the static hierarchy.

Global Scope

C, C++, PHP, and Python programs can consist of a sequence afoiurefinitions in a file.
These languages allow variable declarations to appeaideuisnction definitions and these are
global variablesaccessible to all functions.

A C and C++ global declaration defines both the type and akbsdhie storage:

int sum

To refer to a global variable defined in a different file withallocating space for it:
extern int sum

These languages also support a file scope global-like Jariabt we can access only within the
file where it is defined:

static int sum

This allows the variable to be shared among the file’s funstiowithout the potential for name
collisions with other files.

In C++, if a global variable is masked by a local of the same natrean be preceded hy: to
force access to the global.

In Python, a global variable can be referenced in functiboscan be assigned in a function only
if it has been declared to be global in the function. This isassary because Python automatically
implicitly declares local variables when they are assignéfda reference is intended to be to
a global rather than the creation of a new local, it must fissdbclared to bgl obal in the
function.

Named Constants

A named constanis a variable that is bound to a value only when it is bound twagfe. As
you know from your programming experience so far, their ugeaces program readability and
modifiability and can parameterize programs.

8

CSC 433 Programming Languages Fall 2012

The binding of values to named constants can be either gtailed manifest constanfor dy-
namic.

In Ada, C++, and Java, the expressions that initialize a emistan be of any kind, dynamically
bound {.e., you can use variables).

C# has two kindst eadonl y andconst . The the values ofonst named constants are bound
at compile time, while the values okadonl y named constants are dynamically bound.

C does not support named constants, #Auef i ne preprocessor directives are often used for the
same purpose.

