
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Topic Notes: Overview of Languages

We begin the course with an overview of languages, both historical and current. We will consider
some of the essential features of languages, and categorizethem.

Categories of Languages
We will classify most languages as one or more ofimperative, functional, logic, object-oriented,
markup, as well as eithercompiled or interpreted.

Throughout the semester, we will also see languages that have developed in response to hardware
advances and new ideas in programming.

1940s – program hardware directly

1950s – simple applications (hardware focus)

1960s/1970s – structured programming

• costs shifted from hardware to software

• complexity and size of software grew dramatically

1970s/1980s – data-oriented program design

1980s – object-oriented program design

• data abstraction + inheritance + polymorphism

1990s/2000s – network/web applications

2010s – mobile applications

Imperative Languages

Imperative languages were developed first, and their designis heavily influenced by thevon Neu-
mann architecture at the heart of nearly all computers.

A program for a von Neumann architecture boils down to a set ofinstructions and a loop that
executes those instructions:

1. Fetch an instruction

CSC 433 Programming Languages Fall 2012

2. Update next instruction location

3. Decode the instruction

4. Execute the instruction

5. GOTO 1

Basic picture of the system:

(microcode)

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

The ALU knows how to do some set of arithmetic and logical operations on values in the scratch-
pad.

Usually the scratchpad is made up of a set ofregisters.

The micro-sequencer “brain” controls what the ALU reads from the scratchpad and where it might
put results, and when.

This is what makes up thecentral processing unit (CPU).

We expand this idea a bit to include memory and other devices:

2

CSC 433 Programming Languages Fall 2012

Programs and
data stored in
the same
memory

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

(microcode)

CPU
Chip

Memory

Address Bus

Data Bus

lots of pins

other devices...
mouse

CPU interacts with memory and other devices onbuses.

The details are the subject of a computer organization course. If you have had that course, you
should be able to make connections between what we learn thissemester and what you have seen
there. If not, don’t worry - you will be able to make those connections when you do.

But for us, it is important to understand that each instruction that can execute on our computer
is capable of (some subset of) fetching information from registers and/or memory, applying some
ALU operation to that information to obtain a result, and storing that result in a register and/or
memory.

Both the programs and their data are stored in memory.

Quite naturally, early programming languages (and in fact,many current programming languages)
have statements that perform functions that correspond to this architecture model.

• Variables mimic memory and registers – they store values

3

CSC 433 Programming Languages Fall 2012

• Assignment statements allow us to modify variables

• Arithmetic operations compute values using the ALU

• Iterative repetition allows us to repeat sections of our program

• Control structures allow us to branch to different parts of the program conveniently

Examples of imperative languages include Fortran, C, C++, Pascal, C#, Java, Perl, and JavaScript.

Functional Languages

The primary mechanism for computing in a functional language is, unsurprisingly, the application
of (often recursive) functions to parameters.

• pure functional programming has no variables or assignmentstatements!

• very convenient in some contexts

• not well-suited for others

• functional languages are usually interpreted rather than compiled

Examples include LISP and Scheme.

Logic languages

Logic languages use a completely different paradigm for programming. A program is specified
as a set of rules, and it is up to the language to apply rules in an appropriate sequence to obtain a
desired result.

• rules used to build a knowledge base

• perform queries against knowledge base

The most common example of a logic language is Prolog.

Object-oriented Languages

The object-oriented languages are not a disjoint category from the ones we have listed so far. In
fact, object-oriented languages evolved from imperative languages.

Key features include:

• data abstraction

4

CSC 433 Programming Languages Fall 2012

• inheritance

• polymorphism

• late binding

Examples of object-oriented languages include C++, Java, C#,Smalltalk, and Eiffel.

Markup and Web Languages

These are not really programming languages, but are worthy of a quick mention.

Web-based or application-specific markup languages specify layout of Web pages, database schemas,
etc.

Common examples include HTML, XML, and XSLT.

Language Implementation
We will now take a brief look at how your program in a high-level language becomes the collection
of bits in memory that can be executed by the architecture.

The simplest languages areassembly languages, which are not programming languages in the
sense we are studying them this semester. An assembly language consists of a set of simple opera-
tions that can be performed that each correspond to a machineinstruction that can be executed on
a specific architecture.

For example, the following is an assembly language program for the MIPS architecture that popu-
lates a small array with powers of 2:

main: # main() {
la $t0, ar # get a pointer to ar into t0
addi $t1, $0, 1 # value of 1 to place in first location
sw $t1, 0($t0) # place 1 into array[0]
sll $t1, $t1, 1 # double value for next location
sw $t1, 4($t0) # place 2 into array[1]
sll $t1, $t1, 1 # double value for next location
sw $t1, 8($t0) # place 4 into array[2]
sll $t1, $t1, 1 # double value for next location
sw $t1, 12($t0) # place 8 into array[3]
jr $ra # return control to the simulator

The details of the program are not important, but an assemblylanguage program like this is used
as input to anassembler, which converts each of theassembly language instructions to a single
machine instruction.

5

CSC 433 Programming Languages Fall 2012

In the case of MIPS, each will correspond to a unique 32-bit value, which when encountered by a
MIPS processor, will cause the desired operation to occur.

Any program we can write in any language could be writted in anassembly language, but we do
not often do this.

High-level languages offer an easier, safer, and more portable way to write programs (using the
ideas and constructs you already know and more we will study this semester).

Compiled Languages

It is important to understand how a program in acompiled high-level language works. We will
look at an example in C, but similar procedures apply for C++, Fortran, and many other languages.

See Example:
/home/cs433/examples/hello c

This C program defines one function,main, which calls one other function,printf.

For those unfamiliar,main is the function that starts executing when a C program starts, and
printf is used to produce text output. It works much like Java’sSystem.out.println, and
is provided as part of C’sstandard library. The standard library is an extensive set of functions
available for use by C programs. We will see more of these later.

For now, we want to think about what happens to turn this C source program into an executable
program.

A C compiler translates the C source code into an intermediate code called object code. This object
code is almost machine code but is missing some specifics. Forexample, in this case, the object
code produced has the machine code for themain function, but has no mechanism to call that
function. It also knows it needs to call a functionprintf, but does not have the code for that
function.

For our example, we can perform just the translation from C source to object code with this com-
mand:

gcc -c hello.c

This produces a file calledhello.o, which has the object code for themain function. The-c
flag instructs the compiler to stop after creating the objectfile.

This file is not intended to be human readable, but if we look atit, we might recognize some
artifacts from our source code, most notably the names of functions and any string constants we
used.

We should also note that we are using a specific C compiler here, called GCC, for the GNU C
Compiler, part of the GNU Compiler Collection. This is a free C (and many other language)
compiler system that is available for many systems.

We will look at more details of how a compiler works early thissemester.

6

CSC 433 Programming Languages Fall 2012

Figure 1.3 from Sebesta 2012.

To create an executable program, a second step calledlinking (done by a program called thelinker)
takes the object code from ourmain function, puts it together with precompiled object code forthe
printf function and the low-level code that knows how to start themain function, and produces
an executable file.

For our example:

gcc -o hello hello.o

Invoked in this form (without the-c option from the previous step),gcc acts as a linker. The
-o option allows us to specify the name of the executable file produced. We then list all of the
object files (in this case, just the one) that contain object code that is needed by the program.gcc
automatically brings in needed object code from the standard C library, in this case theprintf
function.

Once we have the executable, we can run it:

./hello

C programmers do not need to be concerned with all of these steps most of the time, but it is very
helpful to be aware of them.

In fact, there is another intermediate step that we should beaware of. The compiler does not convert
C source code directly to object code. It usually translatesC code to the assembly language of the
target architecture, then uses the assembler to convert to object code. We can ask our compiler to
do just this step if we want to see the assembly code it generates.

If we invoke gcc with the -S option, it produces only the assembly language program thatis
normally sent to the assembler to produce object code.

7

CSC 433 Programming Languages Fall 2012

gcc -S hello.c

Interpreted Languages

At the other end of the spectrum is aninterpreted language.

Figure 1.4 from Sebesta 2012.

Here, aninterpreter (which is itself usually a program compiled as above) reads the source code
for a program in an interpreted language and executes it.

We can try out some examples using:

On the web: Applesoft BASIC in JavaScript at
http://www.calormen.com/applesoft/

which uses JavaScript (another interpreted language – interpreted by a web browser!) as its inter-
preter.

While the lack of a compiler and linker eliminated the translation process, interpreted languages
execute 10 to 100 times slower than compiled counterparts.

See Example:
/home/cs433/examples/basic

A Hybrid Approach: Compile for a VM

The situation is a bit different for Java. A Java compiler converts source code (your.java file)
into an intermediatebyte code (the corresponding.class file).

The byte code can then be interpreted on a Java virtual machine (JVM), rather than directly on the
CPU as is done with C and similar languages. The JVM is the program that runs on the CPU.

8

CSC 433 Programming Languages Fall 2012

Figure 1.5 from Sebesta 2012.

There is no separate and explicit linking phase here. Instead, when the byte code for a Java class
is executed, the JVM needs to be able to find any class files containing compiled byte code for any
other classes it uses. This might be other classes you have compiled from your own Java source,
or code from the Java libraries (likeScanner, ArrayList, etc.).

Note that the above is not completely true about modern Java implementations, which use “just
in time” compilers and other technology to allow Java programs to run faster than they would if a
JVM were to interpret byte code. We will likely say more aboutthis later in the semester.

Layers of Abstraction

We can see the layered interface as provided by a typical modern computer system:

9

CSC 433 Programming Languages Fall 2012

Figure 1.2 from Sebesta 2012.

Much of this diagram is the subject of an operating systems orcomputer organization course, but
we can see how Java has an extra “layer” between the language and the hardware.

Historical Overview
Chapter 2 describes the historical development of programming languages. We will not cover this
chapter in detail in class, but it is worth a read.

A diagram similar to the text’s Figure 2.1:

On the web: Pixel’s Proramming Languages History Chart at
http://rigaux.org/language-study/diagram.png

Key ideas:

• Development of a compiled language: Fortran

• Development of a functional language: LISP

• Development of a more structured language: ALGOL

• Business records: COBOL

• String processing: SNOBOL

• Data abstraction: SIMULA 67

• A structures teaching language: Pascal

• Systems programming: C

10

CSC 433 Programming Languages Fall 2012

• Logic programming: Prolog

• Department of Defense designs a language: Ada

• Development of object-oriented programming: Smalltalk, C++, Java

• Web-focused scripting languages: Perl, JavaScript, PHP, Python, Ruby

We will look back at many of the example languages from this chapter and their contributions as
we cover other topics later in the semester.

11

