
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Topic Notes: Expressions and Assignment Statements

We next take a brief look at the very common programming language constructs of assignments
and the expressions used as part of those assignments.

Expressions
An expression is a sequence ofoperands andoperators that is evaluated by a programming lan-
guage.

Arithmetic Expressions

We first look atarithmetic expressions, which typically consist of operators, operands, parentheses,
and function calls.

Some issues we need to consider:

• precedence rules and order of operations

• associativity rules: normally left to right

• unary operators

• ++ and-- and their side effects,e.g., what happens with

y = x++ + ++x;

and the common beginning programmer error:

x = x++;

• mixed mode arithmetic

Other side effects of concern are from functions:

y = x + f(x);

vs.

CSC 433 Programming Languages Fall 2012

y = f(x) + x;

What if the functionf modifies the value ofx? What appear at first to be two ways to write the
same expression can have different results.

If side effects such as this are permitted, some possible compiler optimizations that rely on taking
advantage of operator associativity might need to be disallowed. Forbidding such side effects
might be part of a language’s design.

Another example:

x = (f(a) + b) * (f(a) + c);
temp = f(a);
y = (temp + b) * (temp + c);

If f has no side effects, we know thatx must equaly after these statements execute. Otherwise,
we cannot be sure.

A program for which we can be sure thatx andy obtain the same values in the above can be said
to havereferential transparency.

This is one of the big advantages of pure functional languages. There are no state variables that
can be modified by a function call. The value of any function depends only on its parameters.

Overloaded Operators

An operator that is used for more than one purpose is called anoverloaded operator.

Some are common:

• + being used for addition of various numeric types (and for string catenation in Java)

• + and- for unary and binary operations

• * in C/C++ to indicate either multiplication or dereferencing of a pointer (potential danger
as the meanings are unrelated)

Some languages (e.g., C++) allow user-defined overloaded operators. For example,see:

On the web: Overloading Operators from cplusplus.com at
http://www.cplusplus.com/doc/tutorial/classes2/

This can be a great aid to readability and writability when used properly.

However, there is nothing stopping someone from overloading an operator in a way that is confus-
ing or even nonsensical.

Type Conversions

2

CSC 433 Programming Languages Fall 2012

Programming languages do automatictype conversions (or coercions when implicit).

We can categorize these as

• narrowing – conversion to a type that cannot represent all of the valuesof the original.e.g.,
float to int

• widening – conversion to a type that can represent at least approximations to all of the values
of the original.e.g., int to float

These are often needed inmixed-mode expressions. Most languages implicitly coerce using widen-
ing conversions.

int x, y;
// put something in x and y
double z = x + y;

Narrowing conversions are more troublesome, so an explicitconversion, such as acast, may be
required.

double x, y;
// put something in x and y
int z = (int)(x + y);

In many cases, such casts are needed to avoid a compiler warning or error.

Other errors may be detectable only at run time.

• division by zero (NaN a possible result)

• arithmetic overflow/underflow

Some languages have run time systems that catch such errors,others may allow them to fail silently.

See Example:
/home/cs433/examples/overflow

Boolean Expressions

With boolean expressions, we addrelational operators (comparisons) andlogical operators.

While languages vary greatly in the symbols used for some relational expressions (!= , /= , ˜= ,
.NE. , <>, #), there is a lot of commonality in the operators supported.

A few languages have some unusual variants:

3

CSC 433 Programming Languages Fall 2012

• JavaScript and PHP have special relational operators,=== and!== , which are the same as
the more traditional== and!= , except that they do not coerce their operands.

• Ruby uses== for equality relation operator that uses coercions andeql? for those that do
not.

Recall that in C,int values are used for boolean expressions, with 0 representing false , every-
thing else representingtrue .

Consider this very odd example in C:

if (a < b < c)

It might be nice if this was interpreted as((a < b) && (b < c)) (as many a beginning
programmer has tried), but it instead evaluatesa < b , which becomes a 0 or 1, then compares
that result withc . Not likely what a programmer intended...

Short Circuit Evaluation

Many programming languages useshort circuit evaluation to evaluate an expression without eval-
uating all operations.

It works by observing that an AND evaluates to false if any oneof its operands is false, and an OR
evaluates to true if any one of its operands is true.

This is done in the C/Java languages and others, but is not in BASIC, Pascal, or Fortran.

This can have the obvious efficiency advantage: we don’t needto evaluate terms once the expres-
sion’s overall value has been determined.

However, it also leads to some programming convenience:

int * a = NULL;
// now, a may or may not be given a value
if (a && (* a < 0))

If a is still NULL, the comparison after the&& is not evaluated. If we did evaluate it, a memory
error would occur.

Similarly for checking for values in an array:

index = 0;
while ((index < length) && (a[index] != val))

index++;

The main problem that can arise with short circuit evaluation has to with side effects:

4

CSC 433 Programming Languages Fall 2012

if ((x < 10) || (x++ > 5))

If x < 10 evaluates to true, the rest is not evaluated at all, so thex++ does not take place.

This can happen more subtlely if there is a function call withside effects as part of the expression
that might not be evaluated due to short circuit evaluation.

Assignment Statements
Imperative languages depend on assignment statements for much of their functionality. We all
know what they look like.

In C and friends:

x = 10;

In Pascal and Ada:

x := 10;

Languages usually use a different symbol for assignment andthe equality relational operator (==
in C and friends,= in Pascal).

We have also seen that there are additional shortcut operators in many languages:+=, -= , etc..

These are generally harmless, but again side effects combined with shortcut assignment operators
can be problematic. We would expect that

x += a;

and

x = x + a;

to be equivalent ways to express exactly the same computation.

However, consider

x[a++] += a;

and

x[a++] = x[a++] + a;

5

CSC 433 Programming Languages Fall 2012

What happens? Try it:

See Example:
/home/cs433/examples/sideeffects/shortcutassign.c

Some languages allow us to use the result of an assignment statement as an expression whose value
we can use.

x = y = z = 7;

Here, each assignment evaluates to the value assigned, giving the end result of all 3 variables being
assigned 7.

This can be helpful or problematic in some cases:

if (flag = true)

This always evaluates totrue . In Java, this can only happen withboolean variables (and what
beginning or not-so-beginning Java programmer hasn’t madethis mistake?) since the compiler
will flag erroneous assignments of other types as an invalid boolean expression for the condition.

However, since C/C++ allow any expression to be interpreted asa boolean expression, we could
mistakenly write

if (x = 8)

and not realize we have both causedx to become 8, and forced that condition to evaluate to true
every time.

It can be a useful construct, however:

while (c = getc())

will continue to assignc the values returned bygetc and will reenter the loop until that value was
a \0 character.

More unusual assignment constructs exist in Perl (and in some cases, other languages):

• conditional targets:

($flag ? $total : $subtotal) = 0

which is effectively:

6

CSC 433 Programming Languages Fall 2012

if ($flag){
$total = 0

} else {
$subtotal = 0

}

• multiple assignments

($first, $second, $third) = (20, 30, 40);

which can also be used to accomplish a swap:

($x, $y) = ($y, $x);

7

