
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Topic Notes: C

The C programming language is the lowest-level language (closest to the hardware) we will study
in detail this semester. C is a widely-used, general purposelanguage, well-suited to low-level
systems programming and scientific computation.

We will study it from the point of view of a Java programmer, focusing on the features that make
C significantly different from Java. Fortunately, Java borrowed much of its syntax from C, so it is
not difficult for a Java programmer to read most C programs.

C++ is a superset of C (that is, any valid C program is also a valid C++ program, just one that
doesn’t take advantage of the additional features of C++). C++adds object-oriented feautures. For
now, we will look only at C, not C++.

A Very Simple C Program
We will begin by seeing how to compile and run a very simple C program (hello.c ) in a Unix
environment.

See Example:
/home/cs433/examples/hello c

We will assume that we are working at the Unix command line. Ifyou usessh to connect to
mogul.strose.edu , you are already there. If you are going log into the console of a Linux
system or a Mac, you will need to open a Terminal window.

For you to run this, you will want to copy the example to your own directory. But first, we’ll create
a directory for it:

mkdir ˜/hello

This creates a new directory (folder) in your home directory(indicated by thẽ ) calledhello .

To copy the example from the shared area to your new directory:

cp /home/cs433/hello c/hello.c ˜/hello

We now change directory to the copy in your own directory:

cd ˜/hello

And compile and run it:



CSC 433 Programming Languages Fall 2012

gcc hello.c
./a.out

Things to note from this simple example:

• We run a program namedgcc , which is a free C compiler.

• gcc , in its simplest form, can be used to compile a C program in a single file:

gcc hello.c

In this case, we’re askinggcc to compile a C program found in the filehello.c .

Since we didn’t specify what to call the executable program produced, gcc produces a file
a.out . The name isa.out for historical reasons.

• When we want to run a program located in our current directory in a Unix shell, we type its
name.

– For example, when we wanted to rungcc , we typed its name, and the Unix shell found
a program on the system in a file namedgcc .

– How does it know where to find it? The shell searches for programs in a sequence of
directories known as thesearch path. Try: env .

– So if we want to runa.out , we should be able to type its name. But our current
directory, always referred to in a Unix shell by “. ”, is not in the search path. We need
to specify the “. ” as part of the command to run:

./a.out

• Of course, we probably don’t want to compile up a bunch of programs all nameda.out , so
we usually askgcc to put its output in a file named as one of the parameters togcc :

gcc -o hello hello.c

Here, the executable file produced is calledhello .

• And in the program itself, let’s make sure we understand everything:

– At the top of the file, we have a big comment describing what theprogram does, who
wrote it, and when. Your programs should have something similar in each C file.

– We are going to use a C library function calledprintf to print a message to the
screen. Before we can use this function, we need to tell the C compiler about it. For
C library functions, the needed information is provided inheader files, which usually
end in.h . In this case, we need to includestdio.h . Why? Seeman 3 printf .
(More on the Unix manual later.)

2



CSC 433 Programming Languages Fall 2012

– A C program starts its execution by calling the functionmain . Any command-line
parameters are provided tomain through the first two arguments to main, traditionally
declared asargc , the number of command-line parameters (including the nameof
the program itself), andargv , an array of pointers to character strings, each of which
represents one of the command-line parameters. In this case, we don’t use them, but
there they are.

– Our call toprintf results in the string passed as a parameter to be printed to the
screen. The\n results in a new line.

– Our main function returns anint value. A value of 0 returned frommain generally
indicates a successful execution, while a non-zero return indicates an error condition.
So we return a 0.

• Notes for Java programmers:

– Good news: much of the syntax of Java was borrowed from C, so a lot of things will
look familiar.

– There are no classes and methods, justfunctions, which can be called at any time. Any
information a function needs to do its job must be provided byits parameters or exist in
global variables– variable declared outside of every function and which are accessible
from all functions.

A Bit More Complex Example
We next consider an unnecessarily complicated C program that computes the greatest common
denominator of two integer values.

See Example:
/home/cs433/examples/gcd

Lots of things to notice here:

• We have four files:

– gcd.c : the implementation of thegcd function

– gcd.h : a header file with a prototype for thegcd function

– gcdmain.c : a main program that determines the input numbers, computesthe GCD,
and prints the answer, and

– Makefile : a “make file” that gives a set of rules for compiling these files into the
executable programgcdmain .

When executing, functions from bothgcdmain.c (main ) andgcd.c (gcd ) will be used.
Both of these are included in our executable filegcdmain .

3



CSC 433 Programming Languages Fall 2012

• Start withgcd.c :

– This is a very simple recursive function to compute the greatest common denominator
using the Euclidean Algorithm.

– There is nomain function here, so if we try to compile this by itself as we did with
hello.c , we will get an error.

– Instead, we havegcc use “compile only” mode to generate anobject filegcd.o from
gcd.c :

gcc -c gcd.c

gcd.o is a compiled version ofgcd.c , but it cannot be executed.

C (and many other languages) require a two steps for source code to be converted into
an executable. The first step compiles source code into object code, the second takes
a collection of object code files andlinks together the references in those files into an
executable file. (There’s much more to discuss here, but thisshould suffice for now.)

• Next up,gcd.h :

– Much like stdio.h tells the compiler what it needs to know aboutprintf (among
other things), we havegcd.h to tell other C functions what they need to know about
the functiongcd . Namely, that it’s a function that takes twoint s as parameters and
returns anint .

– Any C file that contains a function that callsgcd should#include "gcd.h" .

• The driver program,gcdmain.c :

– We include several header files to tell the compiler what it needs to know about C
library functions (and ourgcd function) that are called by functions defined here.

– This is where ourmain function is defined.

– We can define local variables to functions, just like local variables in a Java method.

– In this case, we look at the arguments tomain that provide the command-line param-
eters of our program:argc andargv .

– If we have fewer than three command-line parameters, including the program name
itself (which is always there), we prompt the user for two numbers (withprintf ),
then read in two numbers from the terminal withscanf .

– This is a good time to mention C strings. There is no “string” data type in C. Strings
are justnull -terminated arrays ofchar . Unlike Java, arrays do not come equipped
with any way to tell how large they are (like Java’s.length ) so the only way we can
tell the length of a C string is to follow it along until we get to thenull terminator,
which is character’\0’ .

4



CSC 433 Programming Languages Fall 2012

– scanf is a very strange thing. It will make a bit more sense when you are more
familiar with printf , but for now we can summarize what we see there as “read in
two integer values (represented by the%d’s in theformat string), and put them into the
place pointed at by the address ofa and the address ofb, then return the number of
values that matched the input with the correct format.” Right. And you thought I/O
was a pain in Java.

– Thescanf call forces us to think a bit aboutpointers, which are the key to understand-
ing so much of how C works.scanf ’s parameters after the format string are always a
list of pointers to a place in memory where there is room to putthe values being read
in. In this case, we want the twoint values to end up in the local variablesa andb,
so we have to take the address of those variables with the& operator. Don’t worry, it
will make better sense when you see more examples.

– Next, we check to make sure that the input toscanf did, in fact, represent twoint
values. If not, we print an error message and exit. Otherwise, we continue.

– Some things to notice in the error condition:

∗ We usefprintf instead ofprintf . This is because we want to give this out-
put special significance. Rather than sending it to thestandard output, which
is what printf would do, we send it tostandard error, by using fprintf
and specifyingstderr as the first parameter. Java supports the same idea: use
System.err instead ofSystem.out .

∗ Other than that, it works just likeprintf . We give it a format string. In this case,
it includes one specifier, a%s, which means to expect an additional parameter
which is a character string (well, really a pointer to anull -terminated array of
char ). Here, the string isargv[0] , the first command-line parameter, which is
always the name of the program. This labels the error messagewith the program
name.

∗ Once we have detected the error, we don’t want to continue, sowe call theexit
function with an error code of 1 to terminate execution. We could also use the call
return 1; .

– In the case where at least two command-line parameters were provided, we try to con-
vert them (argv[1] andargv[2] ) to integer values. This is done with the overly
complicatedstrtol function, which we use, then check error conditions.

∗ The man page forstrtol tells us we need to include two additional header files,
stdlib.h andlimits.h .

∗ It also tells us about the parameters tostrtol , which are the string which we
would like to convert to a number, a pointer into the string atthe point beyond
which we matched a number (which we don’t care about, so we pass in NULL),
and the base to use for the conversion. We also see that the number is the return
value.

∗ Error checking forstrtol is messy – we need to check the variableerrno ,
defined inerrno.h , to see if an error condition was encountered. If so,errno
will be a non-zero value and we print an error message and exit.

5



CSC 433 Programming Languages Fall 2012

∗ Note that the error check here has two%s’s, so we have two additional parameters
to fprintf , both pointers to strings.

– Finally, we’re ready to check that the numbers entered are non-negative, and if so, we
print out the answer (obtained by thegcd function call inside of aprintf parameter).

– This file includes amain function, so we might think we could compile it to an exe-
cutable as we did withhello.c , but if we try, we’ll find that it doesn’t know how to
find thegcd function. Again, we’ll have to compile but not link:

gcc -c gcdmain.c

This produces the object filegcdmain.o . We need tolink together our two object
files, which, together, have the function definitions we need:

gcc -o gcdmain gcdmain.o gcd.o

This gives usgcdmain , which we can run.

• The Makefile contains rules to generate a sequence of calls togcc that will correctly
compile and link thegcdmain executable.

The bad news: that was a lot of trouble just to write a simple program.

The good news: you will have a lot of examples to go on and you can ask a lot of questions.

Example: Matrix Multiplication
Let’s consider a slightly larger example: matrix-matrix multiplication.

See Example:
/home/cs433/examples/matmult

• This is another example of separate compilation – The function in timer.c will be useful
if we want to measure execution times. We tellmatmult.c about it with the line

#include "timer.h"

This provides aprototypeof the function intimer.c . In many cases, this file would also
define any data structures or constants/macros used by the functions it defines.
This is a good model to use as you move forward and develop morecomplicated C programs.
Group functions as you would group methods in a Java class or member functions in a C++
class.

• Along those same lines, the include files in angle brackets

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

6



CSC 433 Programming Languages Fall 2012

specify system-wide header files. By convention (though mostcompilers don’t really make
a distinction) system-wide header files are in angle brackets, while your own header files are
in double quotes.

• Each file can then be compiled separately to create anobject file(.o file) from the C source.
These object files are all listed at the linking step.
What happens for functiondiffgettime() at compile time? Link time?

• The program uses two system calls:printf() andgettimeofday() . To see how these
work, we can look at theirman pages:

man printf

to see everything we wanted to know about a particular systemcall. But if you do this, you
might get a man page for a command-line utility calledprintf instead of the system call
printf() . Not what we were looking for. The Unix manual is divided up into sections.
The most important of these sections, for our purposes, are Section 1: User Commands, and
Section 3: Library Functions. If we don’t ask for a section, we get section 1. Since section
1 contains an entry forprintf , that’s what it produced. To force it to give you the system
call manual page, you can use (under Solaris)

man 3 printf

This actually tells it to look in section 3, which contains C library functions. How did I know
to look in section 3? Mainly because theprintf man page in section 1 told me so, at the
bottom under the “See Also” section.
Fortunately, you only need to concern yourself with what section of the manual to use when
you look something up that it in more than one section. For example,

man gettimeofday

brings up the man page we want, for thegettimeofday() system call in section 2 (the
system calls section) under Mac OS X and FreeBSD, and in section P (the POSIX library
functions) on some versions of Linux, including that onmogul.strose.edu .
If you see a reference to something likectime(3) in the “See Also” section of a man page,
such as that ingettimeofday() ’s man page, that means thectime() man page is in
section 3. I will use this notation as appropriate throughout the semester.
You will find the Unix manual very helpful as we move forward.

• So what doesgettimeofday(2) do? See the man page and look at the usage in the
example program.

• what’s going on with memory management?
• what would happen if we declaredstruct timeval * variables instead ofstruct

timeval ?

gettimeofday(2) returnswall clock times. This is the amount of elapsed real time. So
if our process is taking turns on the CPU with other processes (see the Operating Systems
course) and it is not always running, it continues to accumulate wall clock time, but notCPU
usage time. There are also system calls to examine CPU usage time which wemay consider
later.

7



CSC 433 Programming Languages Fall 2012

• TheMakefile is using the GCC compiler (gcc ) with the option-O for optimization. If
you want to run this with a different compiler or optimization flags, you can change theCC=
line in theMakefile .

If we compile and run this program, it reports initialization and matrix multiplication times. Ini-
tialization is just filling in matricesa andb. Then we compute the value of each element ofc
using the dot product of the corresponding row ofa and column ofb.

Aside: remember your data structures and algorithms: what is the complexity of matrix-matrix
multiply?

More on Arrays
Our next example demonstrates some ways we can deal with arrays in C.

See Example:
/home/cs433/examples/arrays

The comments in this program describe its usage of the most important C features. Pay special
attention to the usage ofmalloc to allocate chunks of memory andfree to return them to the
system when finished.

This demonstrates one of the key differences between C and Java: we have to tell C when we are
finished with our allocated memory. Java usesgarbage collectionto reclaim memory no longer in
use automatically. We will consider the merits of both approaches later in the semester; for now
we simply need to remember that any memory we allocate in C must be released when we are done
with it. Advice: when you add amalloc() , immediately add the correspondingfree() in an
appropriate place.

File I/O
This example demonstrated some File I/O in C, along with some character manipulations.

See Example:
/home/cs433/examples/lettercount

Comments within the code point out interesting features.

Structures and More Memory Management
Next, we look at a somewhat silly example that demonstrates the use of structures and more com-
plex memory management.

See Example:
/home/cs433/examples/ratios

Again, the comments in the program describe in detail what isgoing on and why.

8



CSC 433 Programming Languages Fall 2012

String Processing
We saw earlier that strings in C are simply represented asNULL-terminated arrays ofchar . The
following example demonstrates more about this and gives examples of some of C’s string pro-
cessing functions.

See Example:
/home/cs433/examples/strings

9


