
Computer Science 432 Operating Systems Fall 2002

Project 2 – The Cow Shell
A mini command interpreter

due: 12:01 AM, Thursday, October 17, 2002

You may work individually or in groups of two or three on this project. Groups must be
formed by Tuesday, October 8.

Introduction

For this project you will write a C program called the Cow Shell (cowsh), a mini command
shell interpreter. cowsh is similar to familiar Unix shells such as the Bourne shell (sh) the
Bourne-Again shell (bash), and C shell (csh, tcsh). You will learn about process creation,
implementation of pipes, input/output redirection, background processes, signals, interrupt
handling, and the use of some system calls.

Description

Like the familiar Unix shells, cowsh should issue a prompt (perhaps “cowsh#”), at which it
reads commands from the user and executes them. When the user issues the exit command,
cowsh should terminate.

Your shell should interpret the following commands:

• exit: exit from the shell

• help: display a message listing usage of all commands

• run: execute the command following it. That command may not be present in the
current directory, in which case the directories in the PATH environment variable should
be searched. Appropriate choice of exec function will help here. The arguments
following the command should be passed to the command.

For example,

cowsh# run cat cat.c

should execute cat with one argument, cat.c

– Input and output redirection should be implemented.

For example,

cowsh# run cat < cat.c > myfile.c

should cause the cat program to read from cat.c and write to the file myfile.c.

– Pipes should be implemented.

For example,

cowsh# run cat cat.c | wc > count.txt

should cause the output of cat cat.c to be the input of wc > count.txt.

1



Computer Science 432 Operating Systems Fall 2002

– <control-c> should abort the command being run, but not cause cowsh to ter-
minate.

You may wish to make the run part of this command optional, allowing programs to
be executed by cowsh in a more familiar manner – by simply typing the command.

• bg: This is similar to run, except that it executes the command in the background.

– Typing <control-c> should not kill commands running in the background.

– When any background command terminates, it should be reported.

cowsh# bg sleep 55 ; invoke sleep in background

cowsh# run cat < hello.c ; give other commands

cowsh# ... ; other commands

cowsh# ... ; other commands

[2] "sleep" terminated ; sleep command is done

– All backgrounded processes should be maintained in a process table by cowsh, so
that the program name is displayed when it terminates, and for use in the jobs

and kill commands.

You may wish to use the more traditional & at the end of a command to provide
backgrounding of processes.

• jobs: Displays all the active background programs, along with their ids. (This id need
not be that same as the actual process id, but it could be the index into your process
table).

cowsh# jobs

PID Name

[0] mycat < myfile.c > newfile.c

[1] idle 20

[4] grep cowsh < doc | wc

• kill: Without any arguments, prints the usage:

cowsh# kill

kill <pid> [<pid> ...]

Otherwise it kills the process with the specified ids and displays the process killed.

cowsh# kill 4

[4] "grep" Killed

cowsh# kill 3 7

[3] "cat" Killed

[7] "wc" Killed

2



Computer Science 432 Operating Systems Fall 2002

• Errors should be reported meaningfully.

• Additional functionality of your group’s choosing should also be implemented (see the
Grading section below).

Implementation Notes

• The system() system call is not to be used.

• The system calls that you should use are fork(), a variant of exec(), signal(),
kill(), open(), dup2(), close(), and pipe().

• Use cowsh scripts to test your shell.

• The following might be a good order to tackle the required functionality.

– exit and help commands

– run command (with no argument passing, no redirection, no pipes)

– run with argument passing

– run with input and output redirection

– bg command

– jobs command

– kill command

– <control-c> trapping

– trapping termination of background processes

– pipes for run/bg commands

• /home/faculty/terescoj/shared/cs432/project2/cowsh contains my version of cowsh.

Grading

The project will be graded out of 75 points, and will be based on correctness, design, docu-
mentation, and style. An on-time submission that correctly implements and documents the
required features can earn up to 65 points. The remaining 10 points are for the implemen-
tation and documentation of additional features of your choosing. Late submissions are not
eligible for credit for additional features.

Submission

By 12:01 AM, Thursday, October 17, 2002, You should submit a file cowsh.tar that includes
the following:

• Your fully commented C source file(s) and a Makefile to build the cowsh executable.

3



Computer Science 432 Operating Systems Fall 2002

• Lucid implementation documentation. It should be such that a person who knows the
problem but not your program should be able to follow your program easily and be
able to change (or enhance) it without any problems (and not get bored reading it).
This documentation should list your important design decisions, the assumptions that
you made (if any), the additional functionality implemented, and any other relevant
information.

Honor Code Guidelines

Collaboration within a group is unrestricted. You may ask the instructor or teaching assis-
tant for help. Outside help (classmates, friends, reference manuals) with the programming
language (syntax) or computer systems is permissible, but help with the design of your pro-
gram is restricted to your group members, the instructor, and the teaching assistant. Outside
references such as language manuals are permitted. Any other collaboration or consultation
is prohibited and will be considered a violation of the Honor Code. If you wish to use or refer
to any software libraries or outside source code beyond the standard C libraries, check with
me first. If in doubt about anything related to Honor Code, ask now and avoid problems
later!

4


