
Computer Science 432 Operating Systems Fall 2002

Homework 6
Due: 11:59 PM, Wednesday, October 30, 2002

Your answers should be submitted as a postscript file hw06.ps or a PDF file hw06.pdf.
Please use these filenames!

1. Tanenbaum, p. 266, Question 32. (1 point)

2. (4 points) Consider a demand paging system with the following time-measured utiliza-
tions:

CPU 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, say whether it will (or is likely to) improve CPU utilization:

(a) install a faster CPU

(b) install a bigger paging disk

(c) increase the degree of multiprogramming

(d) decrease the degree of multiprogramming

(e) install more main memory

(f) install a faster hard disk, or multiple controllers with multiple hard disks

(g) add prepaging to the page-fetch algorithms

(h) increase the page size

3. Read the handout containing the excerpt from McKusick, Bostic, Karels, and Quar-
terman. It describes the virtual memory management of the BSD 4.4 system, upon
which FreeBSD is based. The code that implements virtual memory for FreeBSD is
located in the /sys/vm directory of your favorite lab machine. Browse the source code
to find the implementations of the facilities described in the handout. There is nothing
to turn in for this question.

4. (10 points) Consider the following program segment, written in a C-like language:

const int n=10;

int i, j, A[n], B[n], C[n], temp;

for (i=1; i<=n; i++) {

A[i]=i;

B[i]=n-i+1;

}

for (i=1; i<=n; i++) {

1

Computer Science 432 Operating Systems Fall 2002

temp=0;

for (j=i; j<=n; j++) {

temp=temp+A[n+i-j]*B[j];

}

C[i]=temp;

}

Using a machine with registers denoted by Ri and a fixed instruction size of 1 word per
instruction, the machine language version of this program is loaded in virtual address
space (with page size 4K, i.e., 1024 words) as follows:

0x2FBC (R1) <- ONE Index i

0x2FC0 (R2) <- n Loop bound

0x2FC4 compare R1,R2 Test i>n

0x2FC8 branch_greater * + 0x20

0x2FCC A(R1) <- (R1) Compute A[i]

0x2FD0 (R0) <- n Compute B[i]

0x2FD4 (R0) <- (R0) - (R1)

0x2FD8 (R0) <- (R0) + ONE

0x2FDC B(R1) <- (R0)

0x2FE0 (R1) <- (R1) + ONE Increment i

0x2FE4 branch * - 0x20

0x2FE8 (R1) <- ONE Index i

0x2FEC (R2) <- n Loop bound

0x2FF0 compare R1,R2 Test i>n

0x2FF4 branch_greater * + 0x50

0x2FF8 (R0) <- ZERO temp <- 0

0x2FFC temp <- (R0)

0x3000 (R3) <- (R1) Index j

0x3004 (R4) <- n Loop bound

0x3008 compare R3,R4 Test j>n

0x300C branch_greater * + 0x20

0x3010 (R0) <- n Compute A[n+i-j]

0x3014 (R0) <- (R0) + (R1)

0x3018 (R0) <- (R0) - (R3)

0x301C (R5) <- A(R0)

0x3020 (R6) <- B(R3) Compute B[j]

0x3024 (R5) <- (R5) * (R6)

0x3028 (R5) <- (R5) + temp

0x302C temp <- (R5)

0x3030 (R3) <- (R3) + ONE Increment j

0x3034 branch * - 0x20

0x3038 C(R1) <- (R5) Compute C[i]

0x303C (R1) <- (R1) + ONE Increment i

0x3040 branch * - 0x50

...

0x6000 Storage for C

2

Computer Science 432 Operating Systems Fall 2002

0x7000 Storage for ONE

0x7004 Storage for n

0x7008 Storage for temp

0x700C Storage for ZERO

0x8000 Storage for A

0x9000 Storage for B

Upon execution of this program segment, the following reference string is generated:

ω = 272722(28272272927222)n272722(272733733(373338393373737333)n−i+13637322)n

In /home/faculty/terescoj/shared/cs432/hw06 you will find a C++ program that
simulates the run-time behavior of this program segment when a working set memory
management policy is used. The program prints values:

∆ = window size
P (∆) = total number of page faults
W (∆) = average working set size

F (∆) = P (∆)
|ω|

= average page fault rate

The given main program takes the value of ∆ as a command-line parameter. This
allows you to write a script (in your favorite scripting language) that runs the program
repeatedly for the values of ∆ required. The value of ∆ is specified with the -d flag.
A debugging mode is turned on by -D. The program also takes a flag -n to specify n
in the reference string used. The default is 10, and you may use that to generate your
plots. You are encouraged to try other values of n, but you need only plot for n = 10.

Note that as each entry in the reference string (page) is processed, one of four things
will happen to the working set. (i) the page is added to the set, and none is removed,
(ii) the page is added to the set and one old page is removed, (iii) the page is already
in the set and another page is removed, or (iv) the page is already in the set and no
other page is removed.

(a) Use this program to plot the following curves: ∆ vs. P (∆), ∆ vs. W (∆), ∆ vs.
1/F (∆), for ∆ ranging from 1 to 200. From the plot of ∆ vs. 1/F (∆), explain the
cause of all knees in the graph in terms of program (or reference string) structure.

(b) Is the strategy used by this program one that could be used by a real system to
keep track of a process’ working set? Why or why not?

3

