
Computer Science 431
Algorithms
The College of Saint Rose

Spring 2015

Topic Notes: Introduction and Overview

Welcome to Algorithms!

What is an Algorithm?

A possible definition: a step-by-step method for solving a problem.

An algorithm does not need to be something we run on a computer in the modern sense. The

notion of an algorithm is much older than that. But it does need to be a formal and unambiguous

set of instructions.

The good news: if we can express it as a computer program, it’s going to be pretty formal and

unambiguous.

Example: Computing the Max of 3 Numbers

Let’s start by looking at a couple of examples and use them to determine some of the important

properties of algorithms.

Our first example is finding the maximum among three given numbers.

Any of us could write a program in our favorite language to do this:

int max(int a, int b, int c) {

if (a > b) {

if (a > c) return a;

else return c;

}

else {

if (b > c) return b;

else return c;

}

}

The algorithm implemented by this function or method has inputs (the three numbers) and one

output (the largest of those numbers).

The algorithm is defined precisely and is deterministic.

This notion of determinism is a key feature: if we present the algorithm multiple times with the

same inputs, it follows the same steps, and obtains the same outcome.



CSC 431 Algorithms Spring 2015

A non-deterministic procedure could produce different outcomes on different executions, even

with the same inputs.

Code is naturally deterministic – how can we introduce non-determinism?

It’s also important that our algorithm will eventually terminate. In this case, it clearly does. In

fact, there are no loops, so we know the code will execute in just a few steps. An algorithm is

supposed to solve a problem, and it’s not much of a solution if it runs forever. This property is

called finiteness.

Finally, our algorithm gives the right answer. This very important property, correctness, is not

always easy to achieve.

It’s even harder to verify correctness. How can you tell if you algorithm works for all possible valid

inputs? An important tool here: formal proofs.

A good algorithm is also general. It can be applied to all sets of possible input. If we did not care

about generality, we could produce an algorithm that is quite a bit simpler. Consider this one:

int max(int a, int b) {

if (a > 10 && b < 10) return a;

}

This gives the right answer when it gives any answer. But it does not compute any answer for many

perfectly valid inputs.

We will also be concerned with the efficiency in both time (number of instructions) and space

(amount of memory needed).

Why Study Algorithms?

The study of algorithms has both theoretical and practical importance.

Computer science is about problem solving and these problems are solved by applying algorithmic

solutions.

Theory gives us tools to understand the efficiency and correctness of these solutions.

Practically, a study of algorithms provides an arsenal of techniques and approaches to apply to the

problems you will encounter. And you will gain experience designing and analyzing algorithms

for cases when known algorithms do not quite apply.

We will consider both the design and analysis of algorithms, and will implement and execute some

of the algorithms we study.

We said earlier that both time and space efficiency of algorithms are important, but it is also impor-

tant to know if there are other possible algorithms that might be better. We would like to establish

theoretical lower bounds on the time and space needed by any algorithm to solve a problem, and

to be able to prove that a given algorithm is optimal.

2



CSC 431 Algorithms Spring 2015

Some Course Topics

Some of the problems whose algorithmic solutions we will consider include:

• Searching

• Shortest paths in a graph

• Minimum spanning tree

• Primality testing

• Traveling salesman problem

• Knapsack problem

• Chess

• Towers of Hanoi

• Sorting

• Program termination

Some of the approaches we’ll consider:

• Brute force

• Divide and conquer

• Decrease and conquer

• Transform and conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and bound

• Space and time tradeoffs

The study of algorithms often extends to the study of advanced data structures. Most should be

familiar; others might be new to you:

• lists (arrays, linked, strings)

• stacks/queues

• priority queues

3



CSC 431 Algorithms Spring 2015

• graph structures

• tree structures

• sets and dictionaries

Finally, the course will often require you to write formal analysis and often proofs. You will prac-

tice your technical writing. As part of this, you may wish to gain experience with the mathematical

typesetting software LATEX.

Pseudocode

We will spend a lot of time looking at algorithms expressed as pseudocode.

Unlike a real programming language, there is no formal definition of “pseudocode”. In fact, any

given textbook is likely to have its own style for pseudocode.

Our text has a specific pseudocode style. My own style looks more like Java or C++ code. I will

not be picky about the pseudocode style you use as long as it’s clear what you mean.

A big advantage of using pseudocode is that we do not need to define types of all variables or

specify complex structures.

Example: Greatest Common Denominator

We first consider a very simple but surprisingly interesting example: computing a greatest common

denominator (or divisor) (GCD).

Recall the definition of the GCD:

The gcd of m and n is the largest integer that divides both m and n evenly.

For example: gcd(60,24) = 12, gcd(17,13) = 1, gcd(60,0) = 60.

One common approach to finding the gcd is Euclid’s Algorithm, specified in the third century B.C.

by Euclid of Alexandria.

Euclid’s algorithm is based on repeated application of the equality:

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

More precisely, application of Euclid’s Algorithm follows these steps:

Step 1 If n = 0, return m and stop; otherwise go to Step 2

4



CSC 431 Algorithms Spring 2015

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

And a pseudocode description:

// m,n are non-negative, not both zero

Euclid(m, n) {

while (n != 0) {

r = m mod n

m = n

n = r

}

return m

}

It may not be obvious at first that this algorithm must terminate.

How can we convince ourselves that it does?

• the second number (n) gets smaller with each iteration and can never become negative

• so the second number in the pair eventually becomes 0, at which point the algorithm stops.

Euclid’s Algorithm is just one way to compute a GCD. Let’s look at a few others:

Consecutive integer checking algorithm: check all of the integers, in decreasing order, starting

with the smaller of the two input numbers, for common divisibilty.

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop; otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

This algorithm will work. It always stops because every time around, Step 4 is performed, which

decreases t. It will eventually become t=1, which is always a common divisor.

Let’s run through the computation of gcd(60,24):

Step 1 Set t=24

5



CSC 431 Algorithms Spring 2015

Step 2 Divide m=60 by t=24 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=23, proceed to Step 2

Step 2 Divide m=60 by t=23 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=22, proceed to Step 2

Step 2 Divide m=60 by t=22 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=21, proceed to Step 2

Step 2 Divide m=60 by t=21 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=20, proceed to Step 2

Step 2 Divide m=60 by t=20 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 by t=20 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=19, proceed to Step 2

Step 2 Divide m=60 by t=19 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=18, proceed to Step 2

Step 2 Divide m=60 by t=18 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=17, proceed to Step 2

Step 2 Divide m=60 by t=17 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=16, proceed to Step 2

Step 2 Divide m=60 by t=16 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=15, proceed to Step 2

Step 2 Divide m=60 by t=15 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 by t=15 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=14, proceed to Step 2

Step 2 Divide m=60 by t=14 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=13, proceed to Step 2

Step 2 Divide m=60 by t=13 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=12, proceed to Step 2

Step 2 Divide m=60 by t=12 and check the remainder. It is 0, so we proceed to Step 3

6



CSC 431 Algorithms Spring 2015

Step 3 Divide n=24 by t=12 and check the remainder. It is 0, so we return t=12 as our gcd

However, it does not work if one of our input numbers is 0 (unlike Euclid’s Algorithm). This is a

good example of why we need to be careful to specify valid inputs to our algorithms.

Another method is one you probably learned in around 7th grade.

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and return it as gcd(m,n)

So for our example to compute gcd(60,24):

Step 1 Compute prime factorization of 60: 2, 2, 3, 5

Step 2 Compute prime factorization of 24: 2, 2, 2, 3

Step 3 Common prime factors: 2, 2, 3

Step 4 Multiply to get our answer: 12

While this took only a total of 4 steps, the first two steps are quite complex. Even the third is

not completely obvious. The description lacks an important characteristic of a good algorithm:

precision.

We could not easily write a program for this without doing more work. Once we work through

these, it seems that this is going to be a more complicated method.

We can accomplish the prime factorization in a number of ways. We will consider one known as

the sieve of Eratosthenes:

Sieve(n) {

for p = 2 to n { // set array values to their index

A[p] = p

}

for p = 2 to floor(sqrt(n)) {

if A[p] != 0 { //p hasn’t been previously eliminated from the list

j = p * p

while j <= n {

A[j] = 0 //mark element as eliminated

j = j + p

}

}

// nonzero entries of A are the primes

7



CSC 431 Algorithms Spring 2015

Given this procedure to determine the primes up to a given value, we can use those as our candidate

prime factors in steps 1 and 2 of the middle school gcd algorithm. Note that each prime may be

used multiple times.

So in this case, the seemingly simple middle school procedure ends up being quite complex, since

we need to fill in the vague portions.

8


