
Computer Science 431
Algorithms
The College of Saint Rose

Spring 2015

Topic Notes: Decrease and Conquer

Our next class of algorithms are the decrease and conquer group.

The idea here is that we solve a problem by:

1. Reducing the problem to a smaller instance

2. Solving the smaller instance

3. Modifying the smaller instance solution to be a solution to the original

The main variations on this are:

• Decrease by a constant (often by 1)

• Decrease by a constant factor (often by half)

• Variable size decrease

For example, consider variations on how to compute the value an.

The brute-force approach would involve applying the definition and multiplying a by itself, n

times.

A decrease-by-one approach would reduce the problem to computing the result for the problem of

size n − 1 (computing an−1) then modifying that to be a solution to the original (by multiplying

that result by a).

A decrease-by-constant-factor (2, in this case) approach would involve computing a
n

2 and multi-

plying that result by itself to compute the answer. The only complication here is that we have to

treat odd exponents specially, leading to a rule:

a
n =











(a
n

2 )
2

if n is even

(a
n−1

2 )
2

· a if n > 1 and odd

a if n = 1

This approach will lead to O(log n) multiplications.

See Example:

/home/cs431/examples/Powers



CSC 431 Algorithms Spring 2015

Insertion Sort

Our decrease-by-one approach to sorting is the insertion sort.

The insertion sort sorts an array of n elements by first sorting the first n−1 elements, then inserting

the last element into its correct position in the array.

insertion_sort(A[0..n-1]) {

for (i=0 to n-1) {

v = A[i]

j = i-1

while (j >= 0 and A[j] > v) {

A[j+1] = A[j]

j--

}

A[j+1] = v

This is an in-place sort and is stable.

Our basic operation for this algorithm is the comparison of keys in the while loop.

We do have differences in worst, average, and best case behavior. In the worst case, the while loop

always executes as many times as possible. This occurs when each element needs to go all the way

at the start of the sorted portion of the array – exactly when the starting array is in reverse sorted

order.

The worst case number of comparisons:

Cworst(n) =
n−1
∑

i=1

i−1
∑

j=0

1 =
n−1
∑

i=1

i =
n(n− 1)

2
∈ Θ(n2)

In the best case, the inner loop needs to do just one comparison, determining that the element is

already in its correct position. This happens when the algorithm is presented with already-sorted

input. Here, the number of comparisons:

Cbest(n) =
n−1
∑

i=1

1 = n− 1 ∈ Θ(n)

This behavior is unusual – after all, how often do we attempt to sort an already-sorted array?

However, we come close in some very important cases. If we have nearly-sorted data, we have

nearly this same performance.

A careful analysis of the average case would result in:

2



CSC 431 Algorithms Spring 2015

Cavg(n) ≈
n2

4
∈ Θ(n2)

Of the simple sorting algorithms (bubble, selection, insertion), insertion sort is considered the best

option in general.

Topological Sort

Our next algorithm operates on a special class of graph structures: directed acyclic graphs, or dags.

Dags naturally arise in many problems, but we will assume that we are given a dag and wish to

perform a topological sort of the graph vertices. A toplogical sort of a dag is an ordering of the

vertices such that for every edge in the dag, the starting vertex of the edge is listed before the

ending vertex.

Note that it makes no sense to attempt a topological sort if the graph is either undirected or if it has

a cycle.

One example of a dag might be a course prerequisite graph.

One algorithm to compute a topological sort of a dag is based on a depth-first traversal of the graph

is described in the text.

We will look at a second option (also in the text) called the source removal algorithm.

The algorithm proceeds as follows:

source_removal(Graph G=(V,E))

o = new List

while (G contains a source vertex v)

o.append(v)

G.remove(v) -- and all incident edges

if (G is empty)

return o

else

return error (G was not a dag)

Generating Combinatorial Objects

One of the things we saw in the “brute force” algorithm discussion was that we sometimes need to

enumerate all possible solutions for a given problem.

Permutations

You already implemented one mechanism for generating all permutations of a list of items for a

problem set.

3



CSC 431 Algorithms Spring 2015

The text describes two additional methods for enumerating permutations that we will not discuss

in class. It is worth reading about them.

Subsets

We saw the need to generate all possible subsets (i.e., a power set) when discussing the knapsack

problem.

The text describes four approaches.

For the first, we will use a direct descrease and conquer approach. We will consider each element

in the set, and generate all of the sets that do not have that element. Then, the subsets are exactly

those plus the same group of subsets but with this element added in. See the table in Figure 4.10,

p. 147, for an example.

A quite clever method (and your instructor’s favorite mechanism) involves using an integer value,

treating its bottom n bits as Boolean values indicating whether one of the elements is in the power

set or not. The advantage of this is that the loop to visit all subsets becomes a for loop, counting

from 0 to 2n−1. And inside the loop, we just find the “1” bits and treat the corresponding elements

as being in the set, or not, as appropriate. This generates a “lexicographic order”.

Another alternative is to generate the “squashed order”, where we first generate the empty set, then

the singletons in order, then the two-element subsets, etc. This one is left as an exercise.

Finally, there is the Gray code ordering, where each subset in the sequence differs from the next

by the addition or removal of a single element.

See the algorithm on p. 148.

Decrease-by-a-constant-factor

Binary Search

We next briefly recall the idea of a binary search – the efficient procedure for searching for an item

in a sorted array.

A binary search is often treated as an example of a divide and conquer algorithm – our next major

group of algorithms, but Levitin treats it as an example of a decrease-by-a-constant-factor algo-

rithm.

Here is a nonrecursive algorithm that implements binary search:

bin_search(A[0..n-1], K)

l=0; r=n-1

while (l <= r)

m = floor((l+r)/2)

if (K == A[m]) return m

else if (K < A[m]) r=m-1

4



CSC 431 Algorithms Spring 2015

else l=m+1

return -1

To find an item, we look for it in the middle. If we do not find it, we look only to the left (if the

target is smaller than the middle element) or to the right (if the target is larger than the middle

element).

We will not look in detail at the recurrence or its solution, just note that this is a very fast algorithm:

requiring Θ(log n) comparisons in the worst case.

Fake Coin Problem

The text discusses a version of the fake coin problem where we are given a set of n coins, one of

which is a fake. We know it is a fake because it is lighter than the legitimate coins. To solve the

problem we are able to use a balance scale, and on each side of the scale we can put 1 or more

coins to compare the weights.

Discussion:

• a naive approach: weigh pairs of coins until we find the one that’s lighter than the others

• a reduce-by-constant-factor approach where we weigh equal numbers of coins (half at a

time), narrowing down which half contains the fake until we find it

• a reduce-by-constant-factor approach where we weigh 3 piles of coins at a time, narrowing

down which third contains the fake until we find it

• does it make sense to divide into more than 3 piles?

The text has a few additonal examples that we may encounter later.

5


