
Computer Science 431
Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Limitations of Algorithms

We conclude with a discussion of the limitations of the powerof algorithms. That is, what kinds
of problems cannot be solved by any algorithm, or which will require a minimum cost, and what
is that minimum cost?

Lower Bounds
We will first look at lower bounds, which estimate the minimum amount of work needed to solve
a given problem.

Once we have established a lower bound, we know that no algorithm can exist without performing
work equivalent to at least that of the upper bound.

Some examples:

• the number of comparisons needed to find the largest element in a set ofn numbers

• number of comparisons needed to sort an array of sizen

• number of comparisons necessary for searching in a sorted array ofn numbers

• the number of comparisons needed to determine if all elements of an array ofn elements are
unique

• number of multiplications needed to multiply twon× n matrices

Lower bounds may be exact counts or efficiency classes (bigΩ). A lower bound istight if there
exists an algorithm with the same efficiency as the lower bound.

Some lower bound examples:

• sorting: lower boundΩ(n log n), tight

• searching in a sorted array: lower boundΩ(log n), tight

• determine element uniqueness: lower boundΩ(n log n), tight

• n-digit integer multiplication: lower boundΩ(n), tightness unknown

• multiplication ofn× n matrices: lower boundΩ(n2), tightness unknown

CSC 431 Algorithms Spring 2013

There are a number of methods that can be used to establish lower bounds:

• trivial lower bounds

• information-theoretic arguments (decision trees)

• adversary arguments

• problem reduction

Trivial Lower Bounds

Trivial lower boundsare based on counting the number of items thatmust be processed in input
and generated as output to solve a problem.

Some examples:

• Generating all permutations of a set ofn elements has a trivial lower bound ofΩ(n!) since
all n! permutations must be generated. This lower bound is tight since we have algorithms
to do this that operate inΘ(n!).

• Evaluating a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a0

requires that each of then ai’s need to be processed, leading to a lower bound ofΩ(n).
Again, we have linear algorithms for this, so the bound is tight.

• Computing the product of twon × n matrices requires that each of the2n2 numbers be
multiplied at some point, leading to a lower bound ofΩ(n2). No known algorithm can meet
this bound, and its tightness is unknown.

• A trivial lower bound for the traveling salesman problem canbe obtained asΩ(n2) based on
the number of cities and inter-city distances, but this is not a useful result, as no algorithm
comes anywhere near this lower bound.

One must take care in deciding how to count. One may think thatto search for an element in a
collection, the lower bound would involve looking at every element. That would lead us to a linear
lower bound. But we know that in the case of a sorted array, we can use a binary search and find
the element in logarithmic time. The key lies with the word “must” in the definition of a trivial
lower bound. There is other information in that case (the ordering) that allows us to avoid ever
considering many of the elements.

Information-Theoretic Arguments

2

CSC 431 Algorithms Spring 2013

Rather than the number of inputs or outputs to process, aninformation-theoretic lower boundis
based on the amount of information an algorithm needs to produce to achieve its solution.

A binary search fits here – we are trying to find the location of agiven value in a sorted array. Since
we know the array is sorted, we can, with each guess, eliminate half of the possible locations of
the goal, resulting in a lower bound (worst case) oflog n steps.

Decision treesare a model of an algorithm’s operation that can help us analyze algorithms such as
search and sort that work by comparisons.

In a decision tree, internal nodes represent comparisons and leaves represent outcomes. The tree
branches based on whether the comparison is true or false.

A simple tree for a search for the minimum among 3 numbers can be found in Figure 11.1 of
Levitin.

• The number of leaves may exceed the number of outcomes if the same result can be obtained
via different orders of comparisons.

• The number of leaves must be at least the total number of possible outcomes.

• The operation of an algorithm on a particular input is modeled by a path from the root to a
leaf in the decision tree. The number of comparisons is equalto the number of edges along
that path.

• Worst-case behavior is determined by the height of the algorithm’s decision tree.

It quickly follows that any such tree with a total ofl leaves (outcomes) must haveh ≥ ⌈log
2
l⌉.

Levitin Figures 11.2 and 11.3 show decision trees for selection and insertion sort of 3 elements.

Our main interest here is to determine a tight lower bound on comparison-based sorting:

• Any comparison-based sorting algorithm can be representedby a decision tree.

• The number of leaves (outcomes) must be≥ n! to account for all possible permutations of
inputs.

• The height of binary tree withn! leaves≥ ⌈log
2
n!⌉.

• This tells us the number of comparisons in the worst case

Cworst(n) ≥ ⌈log
2
n!⌉ ≈ n log

2
n

for any comparison-based sorting algorithm.

• Since we have an algorithm that operates inΘ(n log
2
n) (merge sort), this bound is tight.

3

CSC 431 Algorithms Spring 2013

Adversary Arguments

Another approach to finding lower bounds is theadversary argument. This method depends on a
“adversary” that makes the algorithm work the hardest by adjusting the input.

For example, when playing a guessing game to determine a number between 1 andn using yes/no
questions (e.g., “is the number less thanx?”), the adversary puts the number in the larger of the
two subsets generated by last question. (Yes, it cheats.)

The text also provides an adversary argument to show the lower bound on the number of compar-
isons needed to perform a merge of two sortedn-element lists into a single2n-element list (as in
merge sort).

Problem Reduction

A key idea in the analysis of algorithms isproblem reduction. If we can come up with a way to
convert a problem we wish to solve to an instance of a different problem to which we already have
a solution, this produces a solution to the original problem.

Suppose you wrote a program solving some problemA. A few days later, you find out a program
needs to be written to solve a similar problemB. To avoid writing too much new code, you might
try to come up with a way to solveB using your implementation ofA.

So given your input to problemB, you would need to have a procedure to transform this input into
corresponding input to an instance of problemA. Then solve the instance of problemA (which you
already knew how to do). Then you need to transform the outputof A back to the corresponding
solution toB.

As a very simple example, suppose you have written a procedure to draw an ellipse.

draw_ellipse(double horiz, double vert, double x, double y)

This procedure deals with trigonometry and works at a low-level with a graphics library. But it
works.

If you are later asked to write a procedure to draw a circle. Hopefully you would quickly realize
that you could make use of your solution to the problem of drawing an ellipse.

draw_circle(double radius, double x, double y) {
draw_ellipse(2*radius, 2*radius, x, y);

}

So we havetransformedor reducedthe problem of drawing a circle to the problem of drawing an
ellipse. We can say thatdraw circle is “not more difficult than”, or “can be transformed in
polynomial time” todraw ellipse.

4

CSC 431 Algorithms Spring 2013

For a somewhat more interesting example, suppose you are asked to solve the “pairing problem”.
You are given ton-element arraysA1 andA2. Your task is to rearrange the values inA2 such that
the smalled value inA2 is paired with the smallest value inA1. The second smallest inA2 is paired
with the second smallest inA1, and so one. Only values ofA2 are rearranged;A1 is unchanged.

So for the input arrays

A1 23 5 57 45
A2 150 175 100 120

the output would be

A1 23 5 57 45
A2 120 100 175 150

We aren’t concerned about the details of a solution, let’s just assume we have a solution to this
problem. But now, you are asked to solve a different problem. It’s one we know well: sorting an
arrayA containingn values.

How can we make use of the solution to the pairing problem to solve the sorting problem?

We can transform the sorting problem into an instance of the pairing problem by using the input
arrayA from the sorting problem as arrayA2 in the pairing problem, and creating an already-
sorted array (probably just containing the values1, 2, · · · , n) and using that asA1. Application of
the pairing problem’s solution will result in the sorting ofA2, which is exactly what we wanted.

What is the total cost? It’sO(n+T (n)+1) - where the firstn is the time it takes to transform from
the sorting problem to the pairing problem (the construction ofA1), T (n) is the cost of computing
the solution to the pairing problem, and1 (a constant) is the cost of transforming back to a solution
of the sorting problem (which in this case is trivial).

A problem reduction can be used to show a lower bound.

• If problemA is at least as hard as problemB, then a lower bound forB is also a lower
bound forA.

• Hence, we wish to find a problemB with a known lower bound that can be reduced to the
problemA.

Think about this for a minute and it will make sense: if we knowthatany solution to a problem
has to have some minimum cost (the lower bound) and we show that some other problem is at least
as hard as that problem, that other problem shares the lower bound of the first.

For example, suppose we wish to find a lower bound for the problem of finding the minimum
spanning tree of a set of points in the plane. This problem, known as the Euclidean MST problem,
is defined as follows: givenn points in the plane, construct a tree of minimum total lengthwhose
vertices are the given points.

5

CSC 431 Algorithms Spring 2013

The problem with the known lower bound we’ll use is the element uniqueness problem (Ω(n log n),
tight).

So our task is to reduce the element uniqueness problem to an instance of the Euclidean MST
problem. We proceed as follows:

• If our input to the element uniqueness problem is a set of numbersx1, x2, · · · , xn, we can
transform these to a set of points in the plane by attaching a y-coordinate of 0 to each:
(x1, 0), (x2, 0), · · · , (xn, 0).

• If we then solve the Euclidean MST problem on this set of inputto obtain a spanning treeT .

• From this, we can obtain a solution to the original element uniqueness problem by checking
for a 0-length edge.

So we can deduce a lower bound ofΩ(n log n) for the Euclidean MST problem.

Tractable Problems, P and NP

A problem is said to betractableif there exists a polynomial-time (O(p(n)) wherep(n) is a poly-
nomial of the input sizen) algorithm to solve it.

A problem for which no such algorithm exists is calledintractable.

When attempting to determine the tractability of a problem, the answer may be:

• Yes, it is tractable. This is shown by producing a polynomial-time algorithm.

• No, it is not tractable. This is done by proof that no algorithm exists or that any algorithm
must take exponential time.

• The answer is unknown.

Before we continue, we make a distinction between two problemtypes: optimization problems
and decision problems.

In an optimization problem, we look to find a solution that maximizes or minimizes some objective
function. For a decision problem, we seek the answer to a yes/no question.

Many problems have both decision and optimization versions. For example, the traveling salesman
problem can be stated either way:

• optimization: find a Hamiltonian cycle of minimum length.

• decision: find Hamiltonian cycle of length≤ m.

6

CSC 431 Algorithms Spring 2013

Decision problems are more convenient for formal investigation of their complexity and our dis-
cussion that follows will assume decision problems.

P and NP

We define classP as the class of decision problems that are solvable inO(p(n)) time, wherep(n)
is a polynomial of problem’s input sizen.

Many of the problems we have seen fall into classP , but do all decision problems fall into this
class?

The answer is no. Some problems areundecidable, such as the famoushalting problem. The
problem: given a computer program and an input to it, determine whether the program will halt on
that input or continue working indefinitely on it.

We can prove by contradicion that this problem is undecidable.

Suppose thatA is an algorithm that solves the halting problem. More formally, for any programP
and inputI, A(P, I) produces a 1 ifP halts when executed with inputI and 0 if it does not.

Now, take a programP and use the program as its own input. We’ll use the algorithmA to construct
another programQ such thatQ(P) halts ifA(P, P) = 0 (P does not halt on inputP) but does not
halt (goes into a loop) ifA(P, P) = 1 (P halts on inputP).

And finally, we applyQ to itself: Q(Q) halts ifA(Q,Q) = 0 (programQ does not halt onQ) and
does not halt ifA(Q,Q) = 1 (programQ halts onQ).

Given our construction of the programQ, neither of these outcomes is possible, so no such algo-
rithm A can exist.

There is also a set of problems for which it has been shown to take exponential time to obtain a
solution (with a provable lower bound).

But a larger and important set of problems have noknownpolynomial-time solution, but there is
no proof that no such solution exists.

We have seen some of these problems:

• Hamiltonian circuit

• Traveling salesman

• Knapsack problem

• Partition problem

• Bin packing

• Graph coloring

For some of these, while there is no known polynomial-time solution, we can easily check if a
given candidate solution is valid. This leads us to..

7

CSC 431 Algorithms Spring 2013

ClassNP (nondeterministic polynomial) is the class of decision problems whose proposed so-
lutions can be verified in polynomial time,i.e., are solvable by anondeterministic polynomial
algorithm.

A nondeterministic polynomial algorithm is an abstract procedure that:

1. generates a random string purported to solve the problem

2. checks whether this solution is correct in polynomial time

By definition, it solves the problem if it is capable of generating and verifying a solution on one of
its tries.

Many decision problems are inNP , including all of those that are inP .

The big open question in theoretical computer science is whetherP = NP . What would it mean?

First, one more definition.

A decision problemD is NP-completeif it’s as hard as any problem inNP , i.e.,

• D is inNP , and

• every problem inNP is polynomial-time reducible toD

The first requirement isn’t bad – just produce a nondeterministic polynomial algorithm. The sec-
ond, known as theNP-Hard property, is pretty daunting. We’re supposed to show thatevery
problem inNP is polynomial-time reducible to this problem?

Of course, anyNP -complete problems are polynomially reducible to each other, so it suffices to
show that we can reduce any one problem in the set ofNP -complete problems to a problem to
show it isNP -complete.

Nonetheless, there are problems known to beNP -complete.

Informally, anNP -complete problem is one for which we have not yet found anyO(nc) algo-
rithms, and if we do find anO(nc) algorithm to solve it, we’ll then getO(nc) solutions toall
problems inNP .

Figure 11.6 of Levitin shows the idea graphically.

The first problem shown to beNP -complete was theCNF-satisfiability problem: Is a boolean
expression in its conjunctive normal form (CNF) satisfiable,i.e., are there values of its variables
that makes it true?

For our purposes, we will just note that this problem is inNP by noting this nondeterministic
algorithm:

1. Guess truth assignment

8

CSC 431 Algorithms Spring 2013

2. Substitute the values into the CNF formula to see if it evaluates to true

A check can be done in linear time.

The deterministic solution requires2n evaluations.

For example, consider the expression:

(A|¬B|¬C)&(A|B)&(¬B|¬D|E)&(¬D|¬E)

We would have to check each of the25 = 32 combinations of boolean values ofA, B, C, D, and
E.

Other problems can be shown to beNP -complete by producing a reduction of CNF-Sat to that
problem. That is, if a problem can be used to solve CNF-Sat, theproblem isNP -complete.

Some Famous NP -Complete Problems

• TheIndependent Set Problem.

Input: An undirected graphG and a valuek.

Output: Yes ifG has an independent set of size at leastk. An independent set is a subset of
the vertices such that no pair of vertices has an edge betweenthem.

An algorithm to solve this: Enumerate every possible subsetand check if it forms an inde-
pendent set. Keep track of the largest such subset.

In the worst case,2|V | subsets are searched.

This is the best known solution, but even for a problem with 60vertices and a computer that
can do 1 billion subsets per second, it would take 32 years to solve the problem!

What happens if we move up to 61 vertices?

• TheHamiltonian Cycle Problem.

Input: An undirected, weighted graphG = (V,E).

Output: Yes ifG has a Hamiltonian cycle (a cycle that visits every vertex exactly once), no
otherwise.

An algorithm to solve this: Enumerate every possible cycle of vertices and check if the edges
that connect it exist.

In the worst case, we need to check|V |! paths.

This is the best known solution, but again for a relatively small problem – 20 vertices, and a
computer that could do 1 billion permutations per second, again we’re looking at 32 years!

What happens if we move up to 21 vertices?

9

CSC 431 Algorithms Spring 2013

So, Does P = NP

Sure, ifP = 0 orN = 1. But that’s not helpful.

Most theoretical computer scientists believe that no polynomial time solutions exist for the class
of NP -complete problems.

There are hundreds ofNP -complete problems known, and over 30+ years, no one has found a
polynomial time solution to any of them.

Yet, it remains a central open question in computing.

Dealing with NP -Hard Problems
Realistically,NP -hard problems are “solved” by approximations or stochastic approaches. See
Chapter 12!

10

