
Parallel Structures and Dynamic Load Balancing for

Adaptive Finite Element Computation

J. E. Flaherty, R. M. Loy, C.

�

Ozturan

M. S. Shephard, B. K. Szymanski,

J. D. Teresco and L. H. Ziantz

Scienti�c Computation Research Center (SCOREC)

and Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180

An adaptive technique for a partial di�erential system automat-

ically adjusts a computational mesh or varies the order of a nu-

merical procedure to obtain a solution satisfying prescribed accu-

racy criteria in an optimal fashion. We describe data structures

for distributed storage of �nite element mesh data as well as soft-

ware for mesh adaptation, load balancing, and solving compressible

ow problems. Processor load imbalances are introduced at adap-

tive enrichment steps during the course of a parallel computation.

To correct this, we have developed three dynamic load balancing

procedures based, respectively, on load imbalance trees, moment

of inertia, and octree traversal. Computational results on an IBM

SP2 computer are presented for steady and transient solutions of

the three-dimensional Euler equations of compressible ow.

1 Introduction

The �nite element method (FEM) has become a standard analysis tool for

solving partial di�erential equations (PDEs). Adaptive FEMs have gained

importance because they provide reliability, robustness, and time and space

e�ciency. During the solution process, portions of the discretized domain

are spatially re�ned or coarsened (h-re�nement), the method order is varied

(p-re�nement), and/or the mesh is moved to follow evolving phenomena (r-

re�nement), to concentrate or dilute the computational e�ort in areas needing

more or less resolution [10].

Preprint submitted to Elsevier Preprint 25 March 1997

Parallel computation is essential for computationally demanding three-dim-

ensional problems; however, it introduces complications such as the need

to balance processor loading, coordinate interprocessor communication, and

manage distributed data. The standard methodology for optimizing parallel

FEM programs relies on a static partitioning of the mesh across the cooper-

ating processors. However, with adaptive software, a good initial partition is

not su�cient to assure high performance. Load imbalance caused by adaptive

enrichment necessitates a dynamic partitioning and redistribution of data.

Tools developed at the Scienti�c Computation Research Center (SCOREC) at

Rensselaer to facilitate the development and use of parallel adaptive �nite ele-

ment software are described in Section 2. An object-oriented, hierarchical mesh

database is used to store and manipulate mesh data [3]. Meshes are created

by an automatic �nite octree procedure [35]. Parallel extensions to the mesh

database allow operations to be performed on distributed data and provide

for the dynamic migration of �nite elements [7,30]. Parallel mesh enrichment

routines are used for spatial re�nement and coarsening (h-re�nement) [34].

Such reusable software libraries are essential to provide the ability to solve

diverse problems, each of which presents its own challenges. These tools allow

application software to be written in a uniform way and enable the program-

mer to concentrate on issues speci�c to the problem at hand rather than the

details of the underlying mesh structures or parallelization concerns.

The quality of the data partitioning is an important e�ciency factor (Sec-

tion 3). One measure of partition quality is the percentage of elements which

require access to o�-processor data during the computation. On a distributed-

memory parallel computer, poor partition quality results in a higher com-

munication cost during the �nite element solution phase. Static partitioning

methods based on coordinate [4], inertial [20], and spectral [32] bisection are

used to reduce communication cost when distributing initial meshes. A parallel

version of the inertial partitioning method [34] may also be used for dynamic

rebalancing. However, in an adaptive computation, global partitioning strate-

gies can be costly relative to solution time. Thus, a number of iterative dy-

namic load balancing techniques that incrementally migrate data from heav-

ily to lightly loaded processors have been developed [5,7,14,15,17,26,39,41].

An iterative method based on load imbalance trees [30,34] is available within

our system. While these methods provide inexpensive ways to achieve a bal-

anced computation, they can lead to degradation of partition quality. We

also use an octree-based partitioning, which takes advantage of an underlying

tree structure to achieve balance and to maintain reasonable communication

costs [17,28].

Presently, mesh re�nement and coarsening precede a balancing step. Were

we able to predict imbalance prior to re�nement, we could maintain better

performance through the enrichment and subsequent computational steps. A

2

strategy for doing this is described in Section 3.4.

Partitions often have jagged boundaries with elements penetrating into or

protruding from neighboring partitions. Such features increase communication

costs. As described in Section 3.5, interprocessor boundary smoothing may be

used as a post-processing step to improve the quality of any load balancing

procedure [19,21,28].

We solve compressible steady and transient ow problems on an IBM SP2

computer to demonstrate the capabilities of the parallel adaptive system. A

steady conical ow (Example 1, Section 4.2) is used to compare load balancing

procedures. The analysis of a transient shock impacting a cone (Example 2,

Section 4.3) is used to demonstrate the advantages of predictive load balanc-

ing. The solution of a transient ow in a muzzle brake is shown as Example

3 in Section 4.4. In Section 5, we discuss results and present future research

directions.

2 SCOREC Mesh Tools

2.1 SCOREC Mesh Database

The SCOREC Mesh Database (MDB) [3] provides an object-oriented hierar-

chical representation of a �nite element mesh. It also includes a set of operators

to query and update the mesh data structure. The basic mesh entity hierar-

chy consists of three-dimensional regions, and their bounding faces, edges, and

vertices, with bidirectional links between mesh entities of consecutive order

(Figure 1). In three-dimensional meshes, regions are used as �nite elements

while faces serve as elements in two-dimensional meshes. Mesh entities are ex-

plicitly classi�ed relative to a geometric model of the problem domain to allow

for the appropriate representation of the geometry as the mesh is enriched.

Edge

Vertex

Geometric

Modeler

classification

Face

Region

Fig. 1. MDB entity hierarchy, with links to a geometric modeler.

3

The full entity hierarchy allows the e�cient deletion and creation of mesh

entities during h-re�nement and simpli�es attachment of degrees of freedom

to the mesh entities during p-re�nement [33]. The database allows for the

fast retrieval of adjacency information. Examples of available data include the

list of faces bounding an element, and the edges sharing a common vertex.

All entities can have attached attributes such as solution and error indicator

data.

2.2 SCOREC Finite Octree Automatic Mesh Generator

Initial meshes are created using the SCOREC Finite Octree Automatic Mesh

Generator [35]. Beginning with a geometric model of the domain obtained

from CAD software, the mesh generator �rst discretizes the boundary and

then recursively subdivides the domain into cubes called octants to create a

variable level octree. The level of local subdivision is consistent with element

size on the domain boundary. Octants are classi�ed relative to the problem

domain as interior, exterior, or boundary. Exterior octants do not intersect the

domain and receive no further consideration. Interior octants are discretized

using templates. Boundary octants are discretized by face removal procedures

that connect the boundary triangulation to the interior octants.

2.3 Parallel Mesh Database

A Parallel Mesh Database (PMDB) [30,34], which provides operators to create

and manipulate distributed mesh data, is built on top of MDB. Using PMDB,

each processor holds MDB data associated with a subset of the complete

mesh. Entities along partition boundaries are shared by more than one pro-

cessor (Figure 2), and are maintained by a partition boundary data structure.

In three-dimensional distributed meshes, each region is assigned to a unique

processor, but bounding faces, edges, and vertices of regions along an inter-

processor boundary are duplicated on each processor that contains a region

using that entity.

Links to o�-processor data copies are stored as processor-address pairs called

uses. Each partition boundary entity keeps a list of its uses. A duplicated par-

tition boundary entity has a unique owning processor that can be determined

by �nding the minimum ordered pair (p

o

,a

o

) in the list of uses for that entity

using the address as the most signi�cant key. Here p

o

is the id of the owning

processor and a

o

is the address of the entity on p

o

. This ownership informa-

tion can be used to implement an owner-computes rule [9], e.g. , during scalar

product computation in an iterative linear solver. Since (p

o

,a

o

) functions as a

global key for an entity, there is no need to generate and store a separate key

4

+ +

+ +

PROCESSOR 0 PROCESSOR 1

PROCESSOR 2 PROCESSOR 3

Fig. 2. Two-dimensional example of a distributed mesh. Arrows represent interpro-

cessor pointers between boundary entities. Heavy edges and vertices indicate the

unique owner of each shared boundary entity.

by computing the centroid of the entity [42]. Global key generation can, thus,

be replaced by the incremental and faster process of ownership regeneration

of a�ected partition boundary entities (Section 2.4).

Sets of entities on a partition boundary adjacent to a speci�c processor are

organized as doubly linked lists (Figure 3(a)) allowing constant-time inser-

tion and deletion. These can be used to construct lists of partition boundary

entities that are shared among processors. Doubly linked lists are also used

to store the information needed to maintain processor adjacencies based on

various entity connectivities and the number of entities adjacent to the pro-

cessor (Figure 3(b)). PMDB provides fast query and update operations on the

boundary structure. For example, a �nite element procedure can obtain scat-

ter/gather maps of data for use in its communication phase. Fast traversal of

entities on interprocessor boundaries is provided by following the interproces-

sor boundary structure lists. All interprocessor communication is done using

the Message Passing Interface (MPI) [22].

2.4 Mesh Migration

PMDB handles arbitrary multiple migration of elements between processors

(Figure 4) to maintain a balanced computation. Any top-level entity can be

marked for migration, although it is frequently the boundary elements that

are migrated. The migration procedure uses an owner-updates rule to collect

and update any modi�cations to links on partition boundaries. As illustrated

5

+

PROCESSOR 0

V

VV
2 3

~ ~

~

2

E
2

~

E
~

E1

~
V1

~

(a)

(1, a)2 (2, a)21 (3, a)3

V
2

~
V

3

~
V

1

~~
V

(b)

Fig. 3. Doubly linked structures of partition boundary entities: (a) global view and

(b) partition boundary view.

~

E and

~

V denote lists of all partition boundary edges

and vertices, respectively. Symbols with subscripts indicate lists of entities adjacent

to a particular processor. The circled number two in (b) corresponds to the small

number two in (a). The ordered pairs are processor-address pairs.

in Figure 4, mesh migration is done in three main phases: (i) senders migrate

mesh entities to receivers, (ii) senders and receivers send the migrated bound-

ary to the owners, and (iii) owners update the boundary data structures and

notify a�ected processors of the new location of each entity. The processing

done in the �rst stage is proportional to the number of entities being mi-

grated, while the complexity of the second and third stages is proportional to

the number of entities in the boundary of the submesh being migrated. As a

result, if each processor migrates to a small number of processors, such as its

neighbors, the migration will scale with the number of processors [30].

2.5 SCOREC Mesh Enrichment

The SCOREC mesh enrichment [34] procedure performs spatial (h-) re�ne-

ment and coarsening in parallel using error indicator information and enrich-

ment threshold values. From this information, mesh edges are marked to be

6

+ +

+
+

(a)

+

+

+

+

(c)

+

+

+

+

(b)

migrated
boundary

processor 0 processor 1

processor 2 processor 3

Fig. 4. Example of arbitrary multiple migration illustrating the three-stage pro-

cess: (a) senders migrate mesh entities to receivers, (b) senders and receivers send

the migrated boundary to the owners, and (c) owners update the boundary data

structures and notify a�ected processors.

coarsened, re�ned, or unchanged. Mesh enrichment is done in stages following

the order of (i) coarsening, (ii) optimization (optional), (iii) re�nement, (iv)

optimization (optional), (v) re�nement vertex snapping, and (vi) optimiza-

tion (optional), as illustrated on the left of Figure 8. Coarsening collapses a

marked edge to one of its end vertices. Regions connected to the collapsed

vertex that cease to exist are deleted to form a polyhedral cavity, and the

faces of the cavity are connected to the target vertex to form new mesh re-

gions. Mesh optimization improves the quality of triangulations with respect

to a given criterion (e.g. , element shape). Re�nement is performed using sub-

division patterns. First, faces on partition boundaries with marked edges are

triangulated using two-dimensional re�nement templates. Each processor then

independently applies three-dimensional patterns that have been determined

for every con�guration of marked edges (Figure 9). The enrichment process

has an over-re�nement option which reduces element shape degradation at the

expense of creating more elements. In the �nal stage of enrichment, vertices

created by the re�nement process that are classi�ed as belonging to a curved

model boundary must be \snapped" to the appropriate model entity to ensure

mesh validity with respect to the geometry of the problem domain.

7

3 Partitioning and Load Balancing

The distribution of data across the processors of a parallel computer greatly

a�ects performance. A balance of computational load is necessary to avoid

idle processors, but does not su�ce to ensure e�cient parallel computation.

Research on mesh partitioning to date has focused on minimizing the number

of \cuts" that the subdomains create when the partitioning is viewed as a

communication graph whose vertices represent computation and whose edges

represent data dependencies [23,24,36]. With �nite volume and �nite element

schemes this closely corresponds to the task of minimizing the number of ele-

ment faces on interprocessor boundaries. This metric is an excellent indication

of the amount of local data that must be communicated to perform a com-

putation, especially with higher-order methods where three-dimensional facial

modes increase as the square of the polynomial degree.

We appraise the cost of interprocessor communication by two surface indices

of partition quality [8]. The maximum local surface index (MLSI) measures

the maximum percentage of element faces on the boundary of any processor,

and the global surface index (GSI) measures the percentage of all faces on

interprocessor boundaries. For the discontinuous Galerkin methods used for

the computations of Section 4, the GSI is equivalent to the number of edge

\cuts" in the communication graph normalized by the total number of these

edges. Normalization makes the measure independent of problem size. These

surface indices can be thought of as surface-to-volume ratios if the concepts of

surface and volume are expanded beyond conventional notions. With current

technology, message startup is a signi�cant component of communication cost;

therefore, interprocessor connectivity (the number of processors with which

each processor must exchange information during the solution phase) is as

signi�cant a factor in performance [8] as the number of boundary faces.

Three static partitioning procedures are available in PMDB to distribute mesh

data initially. Orthogonal Recursive Bisection (ORB) [4], also called Recursive

Coordinate Bisection, uses the coordinates of element centroids to partition

the mesh. At each recursive step, the Cartesian coordinate of the longest di-

mension of the domain under consideration is bisected, elements are sorted

according to the bisecting coordinate, and half of the elements are assigned

to each subdomain. Inertial Recursive Bisection (IRB) [20], proceeds likewise,

but in a direction orthogonal to its principal axis of inertia. Recursive Spec-

tral Bisection (RSB) [32] is generally considered to be among the best static

mesh partitioning procedures. RSB is costly and may be too expensive for use

in a large-scale three-dimensional adaptive computation. ORB and IRB are

available as initial partitioning methods in PMDB while RSB is available in

Chaco [23] and other packages.

8

A dynamic load balancing scheme that operates on distributed mesh data

is essential for adaptive computation. Multilevel Recursive Spectral Bisection

(MRSB) [2] has improved the e�ciency of RSB, but its parallelization relies

heavily on a shared memory architecture and is unlikely to be e�cient in a

true message passing environment [1]. Other enhancements to RSB [37,38,40]

may make it more useful as a dynamic repartitioner, but serious doubts re-

main. Three dynamic load balancing schemes are available for use with PMDB

data structures and mesh migration operators. Iterative Tree Balancing [30,34]

(ITB) performs repeated local migrations to achieve balance. Parallel Sort In-

ertial Recursive Bisection [34] (PSIRB) uses IRB with a parallel sort. Octree

Partitioning [17] (OCTPART) uses the octree structure underlying the mesh

to achieve load balance.

The measure of imbalance or \cost function" that reects the computational

load on each processor is generally chosen as the number of elements on

a processor with h-re�nement. However, heterogeneous costs are necessary

when (i) using p-re�nement or spatially-dependent solution methods, (ii) us-

ing spatially-dependent time steps, (iii) enforcing boundary conditions, and

(iv) using predictive load balancing (Section 3.4). PMDB provides an element

weighting scheme that can be used to address each of these needs.

3.1 Iterative Tree Balancing

ITB follows Leiss and Reddy [26], Wheat [41], and Devine and Flaherty [17]

in that lightly loaded processors request load from their most heavily loaded

neighbors. However, instead of considering an immediate neighborhood of pro-

cessors, the algorithm views the requests as forming a forest of trees (Fig-

ure 5b). Each tree is then linearized, and a logarithmic-time scan operation

is used to compute load ows [30] to determine the amount of data to be mi-

grated (Figure 5c). Layers of elements on interprocessor boundaries are moved

from heavily loaded to lightly loaded processors to achieve balance within each

tree (Figure 6) [30]. ITB is \di�usive", and a heavily loaded processor will dis-

tribute load to several lightly loaded neighbors. ITB may be iterated to achieve

a global balance within a speci�ed tolerance or be set to terminate after a �xed

number of iterations. With low per-iteration costs, ITB can be executed for

a few iterations between substages of operations like mesh enrichment [7,34]

without the large time penalty of a global repartitioning.

3.2 Parallel Sort Inertial Recursive Bisection

Parallel sorting of elemental coordinates in the inertial frame enables IRB to

be used as a dynamic repartitioning procedure called PSIRB. Thus, mesh data

9

340

360
325

325

300

330

375

350

300

350

400

340

340

340

360
325

325

300

330

375

350

300

350

400

340

340

(a) (b)

400

350
300350

330

300

-13

37

39

48

39

375

325 360

340

325

20 10

25

20

340 340

-1 -1

345

345
345

345

339

339

345

339

339

339

337

339

339

(c) (d)

Fig. 5. An iteration of ITB: (a) original, unbalanced loads, (b) load requests, (c)

forest of trees induced by load requests, and (d) loads after one iteration.

+

+
+

+

processsor 0 processor 1

Fig. 6. ITB \slice-by-slice" element selection

can be distributed before the initial PSIRB invocation. A partitioning of the

initial mesh used in Example 3 (Section 4.4) distributed with PSIRB is shown

on the left of Figure 15. This partition has an MLSI of 12.9% and a GSI of

3.2%.

10

3.3 Octree Partitioning

Octree-based partitioning [17] employs automatic octree generation proce-

dures [35] and uses tree topology to create a one-dimensional ordering of the

octree nodes. The ordered list of nodes is divided into segments correspond-

ing to nearly equal load. Members of any given segment tend to be spatially

adjacent and, thus, form a good partition. Minyard et al. [28] also present an

octree-based partitioning procedure that uses orthogonal coordinate bisection.

The use of space-�lling curves [31] is an alternative that also keeps neighboring

elements of the ordering in close spatial proximity.

Initially, cost metrics of all subtrees of the octree are determined to indicate

loading in speci�c spatial regions. The cost metrics, usually the number of

elements in an octant, may be weighted by polynomial degree or other factors

to indicate heterogeneity. The second phase of the balancing uses the cost

information to construct partitions. Since the total cost is known, the optimal

partition size is also known. Each partition consists of a set of subtrees deter-

mined by a truncated depth-�rst traversal beginning at the root (Figure 7a).

Subtrees are visited during the traversal and added to a current partition if

they �t (Figure 7b). If a subtree exceeds the optimal size of the current parti-

tion (Figure 7c), a decision must be made as to whether the subtree should be

added, or whether the traversal should examine it further. In the latter case,

the traversal continues with the o�spring of the node, and the subtree may

be divided among two or more partitions (Figure 7d). When the imbalance at

a node is too large to justify inclusion in the current partition and the node

is either terminal or su�ciently deep in the tree, the partition is closed (Fig-

ure 7e), and subsequent nodes are added to the next partition. The process

continues until the traversal is complete (Figure 7f).

The decision on whether to add a subtree to a partition or to examine it further

is based on the amount by which the optimal partition size is exceeded. A small

excess may not justify an extensive search and may be used to compensate for

some other partition which is slightly undersized.

After initial mesh partitioning, the tree and mesh data are distributed to the

processors. Tree links may be local or o�-processor, allowing each processor

to store part of the octree and its associated mesh. There is no replication of

the octree. Let N

max

be the maximum number of elements on a processor, P

be the number of processors, and N be the number of mesh elements. Then

dynamic rebalancing may be performed in parallel in O(N

max

) time, assuming

N

max

> logP . For a nearly balanced mesh, this approaches O(N=P). Parti-

tioning time does not grow with P as it would for a recursive algorithm. In

terms of scalability, our algorithm is more advantageous than that of Minyard

et al. [28] who store the global octree on each processor. This e�ectively pro-

11

0 0

1 32

p0

0

1 2 3

p0

0

1 2 3

4 5

p0

0 0

1 12 2 33

4 5 4 5

p0

p1 p1

p0 p2

(a) (b) (c)

(d) (e) (f)

Fig. 7. Depth-�rst traversal for partitioning using OCTPART.

duces a procedure having serial complexity since the partitioning is duplicated

on all processors. However, global information located on a single processor

makes possible more informed decisions and may lead to higher quality parti-

tions.

A partitioning of the mesh of Example 3 (Section 4.4) onto eight processors

using OCTPART is shown on the right of Figure 15. This initial partition

has an MLSI of 9.6% and a GSI of 3.8%. Thus, OCTPART and PSIRB have

comparable GSIs, but OCTPART's lower MLSI indicates a more uniform par-

titioning in this instance.

3.4 Predictive Load Balancing

At present, enrichment precedes a full load balancing, although a few ITB

iterations are performed between substages of the enrichment to maintain

some balance (left of Figure 8). However, the work done during the enrich-

ment procedure is not necessarily proportional to the number of elements on

a processor at the start of re�nement. Thus, balancing using a unit load per

element may not be appropriate. We hope to improve this by using the error

indication data to select element weightings and perform load balancing be-

fore the re�nement stage of the enrichment process (right of Figure 8). This

predictive load balancing should reduce imbalance during both the re�nement

stage of enrichment and the subsequent solution phase and result in fewer ele-

ments being migrated. At present, predictive load balancing is performed using

12

weighted ITB (WITB); however, any load balancing procedure that recognizes

elemental weights may be substituted, e.g. , OCTPART.

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Mesh Optimization

(ITB load balance)

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

Refinement

Mesh Optimization

Mesh Optimization

Refinement Vertex Snapping

Coarsening

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Mesh Optimization

Mesh Optimization

Refinement Vertex Snapping

Coarsening

(ITB load balance)

(ITB load balance)

(ITB load balance)

(ITB load balance)

Refinement

(Weight regions & apply WITB)

Mesh Optimization

(ITB load balance)

Fig. 8. Current nonpredictive (left) and predictive (right) enrichment procedures.

Shaded portions indicate optional steps.

Weight assignments for h-re�nement are made after edges have been marked

for splitting based on error indicator information and a re�nement threshold

but before the re�nement is actually performed. The weighting is based on

the three-dimensional subdivision patterns used by the re�nement algorithm

(Section 2.5) as indicated by the parenthetical numbers in Figure 9. An ele-

ment is assigned a unit weight if none of its edges are marked. If p-re�nement

were being performed, the number of degrees of freedom associated with each

element would also have to be considered in the weighting.

Using the predictive balancing, a small imbalance may occur in both the re-

�nement and the subsequent numerical computation. Imbalance seen in the

solution phase is a result of the migration of mesh elements that occurs dur-

ing re�nement vertex snapping and mesh optimization. It can also be caused

by the deletion and creation of elements in the optimization stage. A greater

imbalance can occur when over-re�nement (Section 2.5) is used since more

subdivisions will be performed than predicted by the original edge marking.

Imbalance after predictive balancing may also occur during re�nement if many

elements with large weights come to reside on a few processors while the re-

maining processors have mostly unit weight elements.

Table 1 compares the nonpredictive and predictive enrichment procedures il-

lustrated in Figure 8 for Example 2 (Section 4.3). Tests were run on 16 proces-

sors of an IBM SP2 computer. The table shows timings for a sequence of ten

meshes generated during a transient adaptive analysis. The times shown for

13

1-edge

2-edge

3-edge

4-edge

5-edge

6-edge

 (3)

 (5) (4)

(6) (6)

 (7)

(8)(4)

(4)

(2)

Fig. 9. Weights for subdivision patterns and predictive load balancing.

each mesh were averaged over ten runs. The \Size" column gives the number

of elements in each mesh for both balancings, the \Enrich+Bal Time" col-

umn shows the sums of enrichment and balancing times, and the last column

contains sums of enrichment, balancing, and solution times. The last row of

the table gives an average across the ten meshes generated adaptively. There

is approximately a 35 percent improvement when comparing sums of balanc-

ing and enrichment times, and a 20 percent improvement in the overall times

when using predictive enrichment. In this transient example, the solution and

combined balancing-enrichment times were comparable; when solution time

dominates adaptivity, e.g. , in a steady-state problem, gains due to predictive

balancing are smaller.

3.5 Partition Smoothing

Application of the PSIRB or OCTPART partitioning methods to distribute

mesh data yields reasonable surface indices [8,17]. However, when a general

mesh enrichment procedure is used on an unstructured mesh, the resulting

�nite elements are not usually aligned with partition boundaries. When ele-

ments are assigned to a processor based on their centroid locations, a choice

of partition boundaries based on octants, cut planes, or slices (Figure 6) may

yield partitions with jagged edges. Such jagged edges increase communica-

tion costs; however, this may be reduced by smoothing the partition bound-

14

Mesh Size Enrich+Bal Time Total Time

Num. Non Pred Non Pred % Di� Non Pred % Di�

(Tets) (Tets) (s) (s) (s) (s)

10 160303 160303 65.41 51.19 21.74 170.57 145.58 14.65

11 159820 159820 74.76 51.14 31.59 169.70 137.61 18.91

12 160712 160710 72.17 45.47 37.00 181.98 146.25 19.63

13 160496 160521 74.97 45.25 39.64 185.83 143.97 22.54

14 160665 160687 76.34 45.08 40.95 165.68 126.00 23.95

15 161412 161441 86.95 52.70 39.39 197.71 151.36 23.44

16 160871 160889 93.53 58.36 37.61 208.31 160.32 23.04

17 162107 162087 89.43 57.20 36.04 187.51 142.42 24.05

18 163337 163431 88.50 55.43 37.37 193.20 146.89 23.97

19 164894 165367 94.15 60.52 35.72 209.36 166.27 20.58

(av) 161462 161526 81.62 52.23 36.01 186.98 146.67 21.56

Table 1. Timings of nonpredictive vs. predictive enrichment procedures.

aries [19,21,28]. To do this, we let each processor traverse its boundary looking

for elements that satisfy the following criteria:

(i) Four faces adjacent to four other processors. This is an isolated element

that is migrated to any processor sharing a face. The donating processor's

boundary is reduced by four faces, and the receiving processor has a net

gain of three faces. This case may occur where several processor domains

meet.

(ii) Four faces adjacent to one other processor. Typically, this case occurs

when the element's centroid lies on the local processor, but its faces touch

only elements on adjacent processors. The element is migrated to the other

processor to eliminate four faces from the donating processor and four faces

from the receiving processor's boundary.

(iii) Three faces adjacent to one other processor. The element forms a spike

into a pocket on the other processor. The element is migrated to the other

processor, reducing the boundary of each processor by two faces.

(iv) Two faces adjacent to one other processor for each of a pair of elements

with a common face. The pair forms a spike into a pocket on the other

processor. The pair is migrated to the other processor, reducing both the

donating and receiving processors' boundaries by two faces.

(v) Three faces adjacent to two other processors. The element is migrated to

the processor sharing the highest number of faces. The donating processor's

15

boundary is reduced by two faces, and the receiving processor's boundary

size is unchanged.

Pattern detection and migration for each of these cases must be performed in a

separate phase to avoid conicting migrations which would degrade boundary

smoothness. Furthermore, within a given case, operations between two or more

processors must be colored to avoid simultaneous exchanges resulting in di-

minished gain or even loss. For example, spikes on one side of a boundary may

exchange sides with spikes on the other side, resulting in a larger boundary

than before the exchange. The coloring may be done using subphases where a

processor �rst sends elements to higher-numbered processors and then sends

them to lower-numbered ones. When three processors are involved, three sub-

phases are necessary based on their relative order.

Minyard et al. [28] perform processor boundary smoothing by a similar it-

erative method. They identify elements on interprocessor boundaries whose

nodes are all shared by two processors. These correspond to Cases (ii), (iii),

and (v). Patterns involving more than two processors (Case (i)) are not con-

sidered. After all elements are marked, half of the marked elements along a

boundary are migrated to one side, and half to the other. While this strategy

will maintain a better load balance, it misses some opportunities to reduce in-

terprocessor communication. For example, if case (iv) were encountered in the

mesh, this strategy could result in no net improvement of the interprocessor

boundaries.

Pattern recognition for each phase of our smoothing algorithm requires time

proportional to the number of elements on a processor's boundary. Communi-

cation is also bounded by the number of elements on the processor's boundary;

however, in practice, it takes much less time since typically less than 1% of

the boundary quali�es for smoothing migration. In return, a signi�cant drop

in the number of boundary faces may be achieved.

Performance data for this smoothing algorithm is shown in Figure 10. The

data were collected from a shock tube problem solved in three dimensions on

8 and 16 processors using OCTPART for load balancing. At the start of both

runs, the GSI is high because distribution of the small initial mesh results in

each processor having few elements. After time 0.03, however, adaptive mesh

re�nement has increased the mesh size substantially and the GSI improves.

Over the remainder of the run, one iteration of smoothing reduced the GSI

by 1-3 points on 8 processors and 2-4 points on 16 processors. In both cases

repeating the smoothing operation yielded an additional improvement of up

to 1 point. Total relative improvement after two smoothing iterations on both

the 8 and 16 processor cases was 14-30%. More than two smoothing iterations

did not provide a signi�cant improvement. In general, partition qualities are

better for the 8 processor case than the 16 because having twice the num-

16

ber of elements per processor simpli�es the partitioning problem. Processor

imbalance immediately after partitioning is 0.5% and is increased by a max-

imum of 2% after one iteration of smoothing and a maximum of 3.5% after

two iterations.

5

6

7

8

9

10

11

12

13

14

15

16

0 0.05 0.1 0.15 0.2 0.25

G
lo

b
a

l
S

u
rf

a
c
e

 I
n

d
e

x

Time

Partition Quality (8 proc)

Octree
Smoothed Once
Smoothed Twice

8

10

12

14

16

18

20

22

0 0.05 0.1 0.15 0.2 0.25

G
lo

b
a

l
S

u
rf

a
c
e

 I
n

d
e

x

Time

Partition Quality (16 proc)

Octree
Smoothed Once
Smoothed Twice

(a) (b)

Fig. 10. Mesh improvements for boundary smoothing.

4 Applications

We solve compressible steady (Example 1, Section 4.2) and transient (Exam-

ples 2 and 3, Sections 4.3 and 4.4) ow problems to demonstrate the capabili-

ties of the parallel adaptive system. Although these are demanding problems,

applications with more complex geometries and loading can be addressed with

the same technique.

4.1 Parallel Euler Solver

Three-dimensional solutions of the Euler equations were obtained using a spa-

tially discontinuous Galerkin �nite element method [6,12,13] and explicit time

integration. Steady problems are solved by local time stepping with all el-

ements advancing at their maximum stable timestep as determined by the

Courant condition. Solution residuals are monitored to sense an approach to

steady state. Transient problems are solved with a global step obtained as

the maximum acceptable timestep over all elements according to the Courant

condition.

Explicit, reected, and far �eld conditions can be prescribed for all mesh faces

classi�ed as faces of the problem domain. For boundaries where density, pres-

sure, and velocity are speci�ed, a virtual element across the face supplies the

17

speci�ed data. Reected conditions are imposed by hypothesizing a virtual

element across the boundary face with a mirror image of the element's data.

At far �eld boundaries, the virtual element has a copy of the element's data.

Error control is accomplished through backtracking. Time steps are either ac-

cepted or rejected based on whether or not elemental error indicators exceed a

prescribed tolerance. Rejected time steps are repeated subsequent to adaptive

space-time h-re�nement and rebalancing. Coarsening is essential to keep mesh

sizes manageable as �ne-scaled structures move through the domain. Upon

h-re�nement, the solution is interpolated to the new mesh, and a new time

step is attempted.

Error indicators based on jumps or gradients of the density, energy, pressure,

or Mach number across a face control adaptive h-re�nement. These face-based

indicators may be used directly or scaled by either face area or inter-element

distance. If desired, they may be combined to form element-based indicators.

Experience suggests that a density gradient scaled by element volume is most

informative, and this indicator has been used for the problems presented here.

However, true error estimates [5,11,16] must be developed for compressible

ow applications.

Time steps are rejected whenever error indicators exceed a rejection threshold.

This threshold should be selected so that accepted steps provide an adequate

solution resolution. Re�nement and coarsening thresholds, respectively, are

the error indicator values above and below which an element will request to

be re�ned or coarsened. Coarsening thresholds for h-adaptivity should be set

such that elements whose error indicator values are well below the rejection

threshold are marked for coarsening. The re�nement threshold should also be

set below the rejection threshold to allow re�nement of elements which are

near the rejection threshold, thereby increasing the likelihood that a large

number of time steps will be accepted before the next rejection.

Without an error estimate, the threshold selection process cannot be fully au-

tomatic and problem independent. An error histogram can aid in the selection

of re�nement and coarsening thresholds. Using the histogram, the system can

monitor the percentages of elements whose error values fall into prescribed

ranges and which are marked for re�nement or coarsening. This information

is used to select appropriate thresholds. In addition, to avoid overowing avail-

able memory, the re�nement threshold may be automatically adjusted based

on an estimate of the number of elements that would be created during re-

�nement.

18

4.2 Example 1: Steady Conical Flow

Consider the steady ow at Mach 5 past a cone having a half-angle of 10

degrees. This problem has a known analytical solution [27] that may be used to

appraise accuracy. Using symmetry, we solve this problem in a box surrounding

one quarter of the cone. The initial mesh contains 41,842 tetrahedral elements.

The entire domain is initialized to a Mach 5 parallel ow toward the cone

base. Reected boundary conditions are applied on symmetry planes and on

the cone's surface. A Mach 5 ow is prescribed at the inlet, and far �eld

supersonic conditions are applied at the outlet.

This problem was run on 16 processors of an IBM SP2 computer. The initial

mesh was partitioned using IRB, and the partitioning was rebalanced with

PSIRB after each of three adaptive steps taken to reach steady state.

This example was used to compare the performance of the OCTPART and

PSIRB partitioning procedures. Tests were done on 8 processors of an IBM

SP2 computer. Surface indices are averaged over 6 to 8 runs. Figure 11 shows

that PSIRB produces partitions which are superior as measured by MLSI

and GSI. However, times to partition and migrate mesh data to achieve load

balance for PSIRB are typically twice that of OCTPART. For problems in

which solution time dominates rebalancing time, the additional cost of PSIRB

may be worthwhile since the improved mesh quality can reduce total solution

time (Section 5).

0

2

4

6

8

10

12

14

0 100000 200000 300000 400000

M
L
S

I

Mesh size

Maximum Local Surface Index

PSIRB
OCTPART

0

1

2

3

4

5

0 100000 200000 300000 400000

G
S

I

Mesh size

Global Surface Index

PSIRB
OCTPART

Fig. 11. Maximum Local (left) and Global (right) Surface Indices for 8-processor

steady conical ow runs using the PSIRB and OCTPART partitioning procedures.

4.3 Example 2: Transient Shock Impacting a Cone

Consider a Mach 2 shock impacting a cone with a 10-degree half angle from

its side. The domain is a box surrounding the cone with one end at the base of

the cone and the opposite one beyond the tip of the cone. Using symmetry, we

solve for the ow about one half of the cone with an initial mesh containing

19

28,437 elements. The domain is quiescent initially, and a Mach 1.25 ow behind

the Mach 2 shock enters the top of the ow domain. Reected conditions are

applied on solid surfaces, planes of symmetry, and on the sides of the problem

domain. Far �eld conditions apply at the bottom face.

This transient ow problem was solved on 16 processors of an IBM SP2 com-

puter. Figure 13 shows the density at global time t = 0:3. Away from the cone,

the shock travels without appreciable disturbance, but the density increases

signi�cantly as the shock di�racts in regions near the cone. The partitioning

selected by PSIRB at t = 0:3 is shown in Figure 14.

4.4 Example 3: Transient Flow in a Muzzle Brake

Consider the three-dimensional unsteady compressible ow in a cylinder con-

taining a cylindrical vent. This problem was motivated by ow studies in

perforated muzzle brakes for large calibre guns [18]. We match ow conditions

to those of shock tube studies of Dillon [18] and Nagamatsu et al. [29]. Our

focus is on the quasisteady ow that exists behind the contact surface for a

short time. Using symmetry, the ow may be solved in one half of the domain

bounded by a plane through the vent. The initial mesh (Figure 12) contains

45,093 tetrahedral elements. The mesh contains 80,659 elements after a pre-

re�nement stage which forces re�nement near the interface between the shock

tube and vent. The larger cylinder (the shock tube) initially contains helium

gas moving at Mach 1.23 while the smaller cylinder (the vent) is quiet. A Mach

1.23 ow is prescribed at the tube's inlet and outlet. The walls of the cylinders

are given reected boundary conditions, and a far �eld condition is applied at

the vent exit. Flow begins as if a diaphragm between the two cylinders were

ruptured.

This problem was run on 16 processors of an IBM SP2 computer. The initial

mesh was partitioned with IRB, and the partitioning was rebalanced with

PSIRB after each adaptive step. Partition quality remains good using PSIRB.

As an example, the partitioning of a 485,345 element mesh after 141 adaptive

re�nement steps has a GSI of 2.48% and a MLSI of 7.63%. Figure 16 shows the

Mach number with velocity vectors in the vent region. Flow features compare

favorably with experimental and numerical results of Nagamatsu et al. [29].

The ow accelerates as it enters the vent. A strong shock forms near the down-

wind vent-shock tube interface. A portion of the ow in the vent accelerates

to supersonic conditions. The reection of the ow from the downwind vent

face produces a component of the ow at the vent exit in a direction opposite

to the principal ow direction. In a cannon, this helps to reduce recoil.

20

Shock

Tube

Vent

Fig. 12. Muzzle brake (Example 3) initial mesh.

5 Discussion

Many of the methods and software libraries used to solve these problems can

be applied in other areas. Those areas under investigation include materials

processing, crystal growth, and biomechanics.

In this paper, we have focused on describing and comparing several load bal-

ancing schemes. Comparisons by timing are di�cult, since times vary between

runs having the same parameters. The high-speed switch of the IBM SP2

computer is a shared resource that a�ects run times. More subtle e�ects can

result from di�erences in the order in which messages used for migration are

processed. Changes in the order in which those messages are received and inte-

grated into the local MDB result in di�erent traversal orders of the mesh enti-

ties. These di�erences cause small changes in load balancings and coarsenings.

While such di�erences in meshes and partitionings do not a�ect the solution

accuracy, they can cause su�cient changes in e�ciency to make precise tim-

ings di�cult. Qualitatively, PSIRB produced the best partitions (measured as

a function of total analysis time). Octree-generated partitions were compara-

ble but resulted in slightly longer solution times. In both cases, one or two

iterations of partition boundary smoothing led to a quality improvement. ITB

by itself resulted in poorer partition quality, but is useful when mesh changes

are small between computational stages. Predictive enrichment provided su-

21

perior performance to our current enrichment process with transient problems

where there are frequent enrichment and balancing steps.

Enhancements to the existing load balancing procedures and the implemen-

tation of new ones are under investigation. Improvements in the slice-by-slice

technique used by ITB for migration are necessary. Experiments with geomet-

rical methods that use the spatial location of elements relative to the centroids

of sending and receiving processors showed promise at reducing the number of

processor interconnections. Vidwans et al. [39] presented divide-and-conquer

load balancing methods that take advantage of the geometric information in a

similar framework. Using inertial techniques in conjunction with the iterative

methods should give results similar to geometrical methods while potentially

costing less. Balancing methods must optimize the total of partitioning, re-

distribution, and computational costs. However, realizing the di�culty of this

task, methods that select elements to maintain \compactness" of partitions,

those that move elements to improve interprocessor adjacency, and those that

control the volume of data migrated [25,37,38] are being considered. We are

also seeking more e�cient and e�ective load balancing techniques for use with

time-dependent problems and adaptive p-re�nement. The weightings described

here will be useful with p-re�nement.

We are implementing a general-purpose, object-oriented, parallel adaptive

framework. Parallel structures will be implemented at the lowest level of the

framework to allow some operations to be done in a more natural and e�cient

way than with PMDB, which resides on top of the sequential MDB. The ad-

ditional information which will be available in the object-oriented framework

will allow more sophisticated load balancing procedures to be implemented.

A recent improvement to our ow solver adds spatially-dependent local time

stepping. Elements that take larger steps wait for elements using smaller

steps to catch up. Preliminary testing indicates a signi�cant reduction in so-

lution times. This extends local temporal re�nement from clusters of uniform

meshes [4,16] to unstructured meshes. We are extending load balancing to

account for this local time stepping.

Acknowledgement

We would like to thank Mark Beall, Carlo Bottasso, Hugues de Cougny, Hema

Murty, and Wesley Turner for the generous use of their software and many

valuable suggestions. Computer systems used in the development and analysis

runs include the 36-node IBM SP2 computer at Rensselaer, the 400-node SP2

at the Maui High Performance Computing Center, and the 512-node SP2 at

the Cornell Theory Center. Authors were supported by AFOSR Grant F49620-

22

95-1-0407, ARO grant DAAH04-95-1-0091, and NSF Grant CCR-9527151.

References

[1] S. T. Barnard, PMRSB: parallel multilevel recursive spectral bisection, in:

Proc. Supercomputing 95, San Diego (1995).

[2] S. T. Barnard and H. D. Simon, Fast multilevel implementation of recursive

spectral bisection for partitioning unstructured problems, Concurrency:

Practice and Experience, 6 (1994) 101{117.

[3] M. W. Beall and M. S. Shephard, A general topology-based mesh data

structure, to appear Int. J. Numer. Meth. Engng. (1997).

[4] M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform

problems on multiprocessors, IEEE Trans. Computers, 36 (1987) 570{580.

[5] K. S. Bey, A. Patra, and J. T. Oden, hp-version discontinuous Galerkin methods

for hyperbolic conservation laws: a parallel adaptive strategy, Int. J. Numer.

Meth. Engng., 38 (1995) 3889{3907.

[6] R. Biswas, K. D. Devine, and J. E. Flaherty, Parallel, adaptive �nite element

methods for conservation laws, Appl. Numer. Math., 14 (1994) 255{283.

[7] C. L. Bottasso, H. L. de Cougny, M. Dindar, J. E. Flaherty, C.

�

Ozturan,

Z. Rusak, and M. S. Shephard, Compressible aerodynamics using a parallel

adaptive time-discontinuous Galerkin least-squares �nite element method, in:

Proc. 12th AIAA Applied Aerodynamics Conference, Colorado Springs, AIAA-

94-1888 (1994).

[8] C. L. Bottasso, J. E. Flaherty, C.

�

Ozturan, M. S. Shephard, B. K. Szymanski,

J. D. Teresco, and L. H. Ziantz, The quality of partitions produced by an

iterative load balancer, in: Proc. Third Workshop on Languages, Compilers,

and Runtime Systems, Troy (1996) 265{277.

[9] D. Callahan and K. Kennedy, Compiling programs for distributed-memory

multiprocessors, J. Supercomputing, 2 (1988) 151{169.

[10] K. Clark, J. E. Flaherty, and M. S. Shephard, Appl. Numer. Math., special ed.

on Adaptive Methods for Partial Di�erential Equations, 14 (1994).

[11] B. Cockburn and P.-A. Gremaud, Error estimates for �nite element methods

for scalar conservation laws, SIAM J. Numer. Anal, 33 (1996) 522{554.

[12] B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge-Kutta local projection

discontinuous Galerkin �nite element method for conservation laws III: One-

Dimensional systems, J. Comput. Phys., 84 (1989) 90{113.

[13] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous

Galerkin �nite element method for conservation laws II: General framework,

Math. Comp., 52 (1989) 411{435.

23

[14] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,

J. Par. Dist. Comput., 7 (1989) 279{301.

[15] H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C.

�

Ozturan, and

M. S. Shephard, Load balancing for the parallel adaptive solution of partial

di�erential equations, Appl. Numer. Math., 16 (1994) 157{182.

[16] K. D. Devine and J. E. Flaherty. Parallel adaptive hp-re�nement techniques

for conservation laws. Appl. Numer. Math., 20 (1996) 367{386.

[17] K. D. Devine, J. E. Flaherty, R. Loy, and S. Wheat, Parallel partitioning

strategies for the adaptive solution of conservation laws, in: I. Babu�ska, J. E.

Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger, and T. Tezduyar,

eds., Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial

Di�erential Equations, No. 75, (Springer-Verlag, Berlin-Heidelberg, 1995) 215{

242.

[18] R. E. Dillon Jr., A parametric study of perforated muzzle brakes, ARDC

Technical Report ARLCB-TR-84015, Benet Weapons Laboratory, Watervliet,

1984.

[19] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland, Parallel algorithms for

dynamically partitioning unstructured grids, in: Proc. 7th SIAM Conference

on Parallel Processing for Scienti�c Computing, San Francisco (1995) 615{620.

[20] C. Farhat and M. Lesoinne, Automatic partitioning of unstructured meshes for

the parallel solution of problems in computational mechanics, Int. J. Numer.

Meth. Engng., 36 (1993) 745{764.

[21] C. Farhat, N. Maman, and G. W. Brown, Mesh partitioning for implicit

computations via iterative domain decomposition: impact and optimization of

the subdomain aspect ratio, Int. J. Numer. Meth. Engng., 38 (1995) 989{1000.

[22] MPI Forum, MPI: A Message Passing Interface Standard, University of

Tennessee, Knoxville, �rst edition, 1994.

[23] B. Hendrickson and R. Leland, The Chaco user's guide, version 1.0, Technical

Report SAND93-2339, Sandia National Laboratories, Albuquerque, 1993.

[24] B. Hendrickson and R. Leland, Multidimensional spectral load balancing,

Technical Report SAND93-0074, Sandia National Laboratories, Albuquerque,

1993.

[25] Y. F. Hu and R. J. Blake, An optimal dynamic load balancing algorithm,

Preprint DL-P-95-011, Daresbury Laboratory, Warrington, 1995.

[26] E. Leiss and H. Reddy, Distributed load balancing: design and performance

analysis, W. M. Kuck Research Computation Laboratory, 5 (1989) 205{270.

[27] J. Maccoll, The conical shock wave formed by a cone moving at a high speed,

Proc. Royal Society of London, Series A, CLIX (1937) 459{472.

24

[28] T. Minyard, Y. Kallinderis, and K. Schulz, Parallel load balancing for dynamic

execution environments, in: Proc. 34th Aerospace Sciences Meeting and Exhibit,

Reno, AIAA-96-0295 (1996).

[29] H. T. Nagamatsu, K. Y. Choi, R. E. Du�y, and G. C. Carofano, An

experimental and numerical study of the ow through a vent hole in a perforated

muzzle brake, ARDEC Technical Report ARCCB-TR-87016, Benet Weapons

Laboratory, Watervliet, 1987.

[30] C.

�

Ozturan, Distributed Environment and Load Balancing for Adaptive

Unstructured Meshes, PhD thesis, Computer Science Dept., Rensselaer

Polytechnic Institute, Troy, 1995.

[31] A. Patra and J. T. Oden, Problem decomposition for adaptive hp �nite element

methods, Comp. Sys. Engng., 6 (1995) 97.

[32] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with

eigenvectors of graphs, SIAM J. Mat. Anal. Appl., 11 (1990) 430{452.

[33] M. S. Shephard, S. Dey, and J. E. Flaherty, A straight forward structure to

construct shape functions for variable p-order meshes, SCOREC Report # 6-

1996, Scienti�c Computation Research Center, Rensselaer Polytechnic Institute,

Troy, 1996. To appear Comp. Meth. in Appl. Mech. and Engng..

[34] M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C.

�

Ozturan, C. L. Bottasso,

and M. W. Beall, Parallel automated adaptive procedures for unstructured

meshes, in: Parallel Computing in CFD, No. R-807 (Agard, Neuilly-Sur-Seine,

1995) 6.1{6.49.

[35] M. S. Shephard and M. K. Georges, Automatic three-dimensional mesh

generation by the Finite Octree technique, Int. J. Numer. Meth. Engng., 32

(1991) 709{749.

[36] H. D. Simon, Partitioning of unstructured problems for parallel processing,

Comp. Sys. Engng., 2 (1991) 135{148.

[37] A. Sohn, R. Biswas, and H. D. Simon, Impact of load balancing on unstructured

adaptive computations for distributed-memory multiprocessors, in: Proc.

Eighth IEEE Symposium on Parallel and Distributed Processing, New Orleans

(1996) 26{33.

[38] R. Van Driessche and D. Roose, An improved spectral bisection algorithm

and its application to dynamic load balancing, Parallel Computing, 21 (1995)

29{48.

[39] V. Vidwans, Y. Kallinderis, and V. Venkatakrishnan, Parallel dynamic load-

balancing algorithm for three-dimensional adaptive unstructured grids, AIAA

J., 32 (1994) 497{505.

[40] C. H. Walshaw and M. Berzins, Dynamic load balancing for PDE solvers on

adaptive unstructured meshes, Concurrency: Practice and Experience, 7 (1995)

17{28.

25

[41] S. R. Wheat, K. D. Devine, and A. B. MacCabe, Experience with automatic,

dynamic load balancing and adaptive �nite element computation, in: Proc. 27th

Hawaii International Conference on System Sciences, Kihei (1994) 463{472.

[42] R. D. Williams, Voxel databases: A paradigm for parallelism with spatial

structure, Concurrency: Practice and Experience, 4 (1992) 619{636.

26

Fig. 13. Density values for Example 2 at time t = 0:3. Shading indicates values of

the density on each element.

Fig. 14. Partitioning of the mesh for Example 2 using PSIRB at time t = 0:3.

Shading indicates processor assignments.

27

Fig. 15. Initial meshes for Example 3 distributed onto 8 processors by PSIRB (left)

and OCTPART (right). Shading indicates processor assignments.

Fig. 16. Mach number with velocity vectors on the symmetry plane for Example 3.

28

