Finite Element Methods

e Simulate physical phenomena governed by partial differential equations

e Most real-world problems do not have an analytical solution
— must be computed numerically

e Compute approximate solutions within rigid, provable error bounds

e Discretize the domain into “elements”
e Elements form the “mesh”

e Solve on each element, “paste together”
to obtain solution

e Solution at each step on an element typically depends on the previous values
at that element and neighboring elements

For example, at time ¢ + 1, value at E5 may
depend on the time ¢ value of E5 and the time ¢
values of its immediate neighbors E4, E7, and

E11.

Adaptive Methods

e More elements =—> better accuracy, but higher cost
e Adaptivity concentrates computational effort where it 1s needed
e Guided by error estimates or error indicators

e h-adaptivity: mesh enrichment

NN/

Uniform mesh Adapted mesh

e p-adaptivity: method order variation; r-adaptivity: mesh motion
e [ocal refinement method: time step adaptivity

e Adaptivity is essential

A Simple Adaptive Computation

Straightforward heat equation solution using Jacobi iteration

e Problem setup — unit square, all boundaries have temperature 0, fixed heat

source with temperature 2 at (é, g) and temperature -2 at (é, g)

t=-2 at (0.2,0.8) t=2 at (0.8,0.8)
[J [J

/\ t=0 on all boundaries

e Approach: at each iteration, the new solution value is the average of neigh-
bors’ solution values

e By no means is this the most efficient technique, but it is simple enough to
understand and demonstrates the important ideas

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

02
03 57—
0.6 7

X 0.8 0.9 —0

Uniform distribution of 64 points, 74 iterations, total 4736 steps

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

X

Uniform distribution of 256 points, 168 iterations, total 43,008 steps

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

..........

.....
......
o .

.................

. . .
......
.......

C e .,
o . .
.

LI

LR

X

Uniform distribution of 1024 points, 338 iterations, total 346,112 steps

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

, total 2,940,928 steps

ts, 718 iterations

n

ibution of 4096 po

1Str1

Uniform d

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

e

..~. :;_,.,'.

o

I'?’ :?;"

o f "Iix

R

\xz‘

;zg,,-f

R
S :~.-...$~'..

R
e

.-.;' Soares
RIS ':.j',_;
'sc"" 3 _..

53 -..,, .../- '~~.,~'
"‘-";/- 2 ,,.,,."-"C-/'- 55 _,~
-.':. "'."
S

e v
"»«.,7"'

Uniform distribution of 16,384 points, 1302 iterations, total 21,331,968 steps

A Simple Adaptive Computation

The number of solution points determines how accurate the solution can be.

X

Uniform distribution of 65,536 points, 1508 iterations, total 98,828,288 steps

A Simple Adaptive Computation

But there’s no need for all those points away from the heat source!

Same accuracy as most refined grid, but only 26,812 points, 28,453,576 steps

A Simple Adaptive Computation

How do we get there?

Large-scale Rayleigh-Taylor Instability
e Department of Energy/ASCI project

— University of Chicago
— Argonne National Laboratory
— Rensselaer Polytechnic Institute

e Goal: model a deflagration leaving the surface of a compact star

— Long term: simulate thermonuclear flashes in astrophysical P
bodies (neutron stars, white dwarves) |

— Study Rayleigh-Taylor instabilities
— Ideal gases: p = 2 on top, p = 1 on bottom
— Sinusoidal velocity perturbation with magnitude 0.05

e Parallel adaptive solution

— Discontinuous Galerkin solution of the Euler equations
— Woodward and Colella flux

— Similar accuracy without adaptivity would require orders of "=
magnitude more work [Animations]

Parallel Strategy
e Dominant paradigm: Single Program Multiple Data (SPMD)
— distributed memory; communication via message passing

e Can run the same software on shared and distributed memory systems

e Adaptive methods necessitate linked structures
— automatic parallelization is difficult

e Explicitly distribute the computation via a domain decomposition

Subdomain 1 Subdomain 3

Subdomain 4

Subdomain 2

e Distributed structures complicate matters

— interprocess links, boundary structures, migration support

— very interesting issues, but not today’s focus

Mesh Partitioning

e Determine and achieve the domain decomposition

e “Partition quality” is important to solution efficiency

— evenly distribute mesh elements (computational work)
— minimize elements on partition boundaries (communication volume)

— minimize number of “adjacent” processes (number of messages)

e But.. this is essentially graph partitioning: “Optimal” solution intractable!

Why dynamic load balancing?
Need a rebalancing capability in the presence of:

e Unpredictable computational costs

— Multiphysics
— Adaptive methods
Initial balanced partition Adaptivity introduces imbalance Migrate as needed Rebalanced partition

e Non-dedicated computational resources

e Heterogeneous computational resources of unknown relative powers

Load Balancing Considerations

e Like a partitioner, a load balancer seeks

— computational balance

— minimization of communication and number of messages
e But also must consider

— cost of computing the new partition
* may tolerate imbalance to avoid a repartition step
— cost of moving the data to realize it

* may prefer incrementality over resulting quality
e Must be able to operate in parallel on distributed input
— scalability

e [t is not just graph partitioning — no single algorithm is best for all situations

e Several approaches have been used successfully

Geometric Mesh Partitioning/Load Balancing
Use only coordinate information

e Most commonly use “cutting planes” to divide the mesh

Subdomain 1 Subdomain 2

e Tend to be fast, and can achieve strict load balance

e “Unfortunate” cuts may lead to larger partition boundaries
— cut through a highly refined region

e May be the only option when only coordinates are available

e May be especially beneficial when spatial searches are needed

— contact problems in crash simulations

Recursive Bisection Mesh Partitioning/Load Balancing
Simple geometric methods

e Recursive methods, recursive cuts determined by

Coordinate Bisection (RCB) Inertial Bisection (RIB)

Cut 2
Cut 2

Cut 1

e Simple and fast
e RCB i1s incremental
e Partition quality may be poor

e Boundary size may be reduced by a post-processing “smoothing” step

SFC Mesh Partitioning/Load Balancing

Another geometric method

e Use the locality-preserving properties of space-filling curves (SFCs)

e Each element 1s assigned a coordinate along an SFC

— a linearization of the objects in two- or three-dimensional space

ToT o]t
o e | ®
e e | e
B 196
I P

Graph-Based Mesh Partitioning/Load Balancing

Use connectivity information

Subdomain 1 Subdomain 3

Subdomain 2 g

Partition 3 Subdomain 4

Partition 0

Partition 2

e Spectral methods (Chaco)

— prohibitively expensive and difficult to parallelize

— produces excellent partitions
e Multilevel partitioning (Parmetis, Jostle)

— much faster than spectral, but still more expensive than geometric

— quality of partitions approaches that of spectral methods

e May introduce some load imbalance to improve boundary sizes

Load Balancing Algorithm Implementations

e Again, no single algorithm is best in all situations
e Some are difficult to implement

e Bad: implementation within an application or framework

— likely usable only by a single application
— at best, usable by a few applications that share common data structures

— unlikely that an expert in load balancing is the developer
e Better: implementation within reusable libraries

— load balancing experts can develop and optimize implementations
— application programmers can make use without worrying about details
— but...how to deal with the variety of applications and data structures?

* require specific input and output structures
— applications must construct them
* data-structure neutral design
— applications only need to provide a small set of callback functions

Zoltan Toolkit

Includes suite of partitioning algorithms, developed at

e General interface to a variety of partitioners and load balancers

e Application programmer can avoid the details of load balancing

e Interact with application through callback functions and migration arrays
— “data structure neutral” design

e Switch among load balancers easily; experiment to find what works best

e Provides high quality implementations of:

— Coordinate bisection, Inertial bisection

— Octree/SFC partitioning (with Loy, Gervasio, Campbell — RPI)
— Hilbert SFC partitioning

— Refinement tree balancing (Mitchell — NIST)

e Provides easier-to-use interfaces for:

— Metis/Parmetis (Karypis, Kumar, Schloegel — Minnesota)
— Jostle (Walshaw — Greenwich)

e Freely available: http://www.cs.sandia.gov/Zoltan/

Typical Computation Flow

Application Software

Setu p/In|t|aI done
Partltlonlng Compute

| 'done

I

|

! Rebalance Evaluate

! Load Error

: |

\ I

\ “ 10K

\ \ Adaptive

I Step

~

Load Balancing Suite

Partitioning and Dynamic Load Balancing
Implementations/Support Tools

Example Parallel Adaptive Software

We wish to run several applications.
e Rensselaer’s “LOCO”

— parallel adaptive discontinuous Galerkin solution
of compressible Euler equations in C.

— using Parallel Mesh Database
— “perforated shock tube” problem

e Rensselaer’s “DG”

— also discontinuous Galerkin methods, but in C++
— using Algorithm-Oriented Mesh Database
— Rayleigh-Taylor flow instabilities and others

e Mitchell’s PHAML
— Fortran 90, adaptive solutions of various PDEs

e Simmetrix, Inc. MeshSim-based applications

e Real interest for parallel computing i1s in 3D transient
problems

Target Computational Environments

e FreeBSD Lab, Williams CS: 12 dual 2.4 GHz Intel Xeon processor systems

e Bullpen Cluster, Williams CS: 13 node Sun cluster, total of 4 300 MHz and
21 450 MHz UltraSparc II processors

e Dhanni Cluster, Williams CS: 8 nodes, each with 2 dual-core 2.8 GHz Intel
Xeon processors

e Medusa Cluster, RPI: 32 dual 2.0GHz Intel Xeon processor systems
e ASCl-class supercomputers: large clusters of SMPs
e System X, Virginia Tech: 1100 dual 2.3 GHz Apple G5 nodes, 12.25 TeraOps

e TeraGrid — NSF’s Internet “Grid Computer”: nodes at NCSA, San Diego
Supercomputing Center, Argonne National Laboratory, Caltech, and the
Pittsburgh Supercomputer Center, peak projected performance 40 TeraOps

This 1s just a small sample of the wide variety of systems in use.

e long-term “resource-aware computation” goal: software that can run effi-
ciently on any of them

e work described here i1s one step toward this goal, current focus on systems
fonnd at nlaces like Williams

Resource-Aware Computing Motivations

e Heterogeneous processor speeds

— seem straightforward to deal with
— does it matter?

e Distributed vs. shared memory
— some algorithms may be a more appropriate choice than others
e Non-dedicated computational resources

— can be highly dynamic, transient

— will the situation change by the time we can react?

e Heterogeneous or non-dedicated networks

e Hierarchical network structures
— message cost depends on the path it must take
e Relative speeds of processors/memory/networks

— important even when targeting different homogeneous clusters

What Can Be Adjusted?

e Choice of solution methods and algorithms
— different approaches for multithreading vs. distributed memory
e Parallelization paradigm

— threads vs.message passing vs.actor/theater model vs.hybrid approaches

— “bag-of-tasks” master/slave vs. domain decomposition
e Ordering of computation and/or communication
e Replication of data or computation
e Communication patterns (e.g., message packing)
e Optimal number of processors, processes, or threads
— not necessarily one process/thread per processor
e Our focus: partitioning and dynamic load balancing

— tradeoffs for imbalance vs. communication volume
— variable-sized partitions

— avold communication across slowest interfaces

Bullpen Cluster at Williams College

stanton
1 CPU @ 333MHz
128 MB memory

lloyd
1 CPU @ 300MHz
128 MB memory

nelson
1 CPU @ 300MHz
128 MB memory

mendoza
1 CPU @ 300MHz
128 MB memory

All nodes contain (aging) Sun UltraSparc II processors

http://bullpen.cs.williams.edu/

wetteland
4 CPUs @ 450MHz
4 GB memory

rivera
4 CPUs @ 450MHz
4 GB memory

gossage
2 CPUs @ 450MHz
512 MB memory

righetti
2 CPUs @ 450MHz
512 MB memory

mcdaniel
2 CPUs @ 450MHz
1 GB memory

lyle
2 CPUs @ 450MHz
512 MB memory

farr
2 CPUs @ 450MHz
1 GB memory

bullpen
1 CPU @ 450MHz
1 GB memory

arroyo
2 CPUs @ 450MHz
512 MB memory

Resource-Aware Load Balancing

e Goal: account for environment characteristics in load balancing

e Idea: build a model of the computing environment and use it to guide load
balancing

— represent heterogeneity and hierarchy

x processor heterogeneity, SMP
* network capabilities, load, hierarchy

— static capability and dynamic monitoring feedback
e Use existing load balancing procedures to produce, as appropriate

— variable size partitions

— “hierarchical” partitions

e [onger-term: tailor other parts of the computation to the environment

e Alternate approach: process-level or system-level load balancing

DRUM: Dynamic Resource Utilization Model

" Rensselaer

Williams

D
DR |U

——] —

=\

e Run-time model encapsulates the details of the execution environment

e Supports dynamic load balancing for environments with

— heterogeneous processing capabilities
— heterogeneous network speeds
— hierarchical network topology

— non-dedicated resources
e Not dependent on any specific application, data structure, or partitioner

http://www.cs.williams.edu/drum/

Computation Flow with DRUM Monitoring

Application Software

N

|

done

Setup/lInitial
Partitioning Compute

— — —
—_— —
—_—

>

|

| [Rebalance] OK Evaluate]’ ,

' Load Error

\ .

1‘ 'l

\ | _

Vo Adaptive -
I Step

[Static]
Capabilities

\{ Dynamic
1~ ,1Monitorin

/

Performance
| Analysis

Load Balancing Suite

Partitioning and Dynamic Load Balancing - =~
. Implementations/Support Tools

Resource
Monitoring
System

DRUM: Dynamic Resource Utilization Model
(N1

/’\—1 TN \j‘\ | ‘ | ‘
(cPu) CpU CpU Network 2
‘ I:Ijniry ‘ Me[l\ory‘ ‘ Meﬁlory‘ — ’—,‘ ——— HH — \—‘ — — UP UP UP @
‘ Memory ‘ ‘ Memory ‘ SM P‘ SM P‘ e SM P‘
Computing Environment Machine Model

e Tree structure based on network hierarchy

e Computation nodes, assigned “processing power”

— UP — uniprocessor node

— SMP - symmetric multiprocessing node
e Communication nodes

— network characteristics (bandwidth, latency)

— assigned a processing power as a function of children

DRUM: Dynamic Resource Utilization Model

e Static capabilities

— gathered by benchmarks or specified manually once per system
— processor speeds, network capabilities and topology

e Dynamic performance monitoring

— gathered by “agent” threads managed through a simple API
— communication interface (NIC) monitors

* monitor incoming and outgoing packets and/or available bandwidth
— CPU/Memory monitors

x monitors CPU and memory usage and availability

e Combine static capability information and dynamic monitoring feedback

e Straightforward to use powers to create weighted partitions with existing
procedures

e Optional Zoltan interface allows use by applications with no modifications

e More details and computational results in recent papers:
Applied Numerical Mathematics, 52(2-3), pp. 133-152, 2005
Computing in Science & Engineering,7(2), pp. 40-50, 2005

