
Finite Element Methods
• Simulate physical phenomena governed by partial differential equations
• Most real-world problems do not have an analytical solution

– must be computed numerically

• Compute approximate solutions within rigid, provable error bounds
• Discretize the domain into “elements”
• Elements form the “mesh”
• Solve on each element, “paste together”
to obtain solution

• Solution at each step on an element typically depends on the previous values
at that element and neighboring elements

E1 E2

E6

E9

E12
E10 E11

E13
E8

E7E5

E4E3 For example, at time t + 1, value at E5 may
depend on the time t value of E5 and the time t
values of its immediate neighbors E4, E7, and

E11.



Adaptive Methods
• More elements =⇒ better accuracy, but higher cost
• Adaptivity concentrates computational effort where it is needed
• Guided by error estimates or error indicators
• h-adaptivity: mesh enrichment

Uniform mesh Adapted mesh

• p-adaptivity: method order variation; r-adaptivity: mesh motion
• Local refinement method: time step adaptivity
• Adaptivity is essential



A Simple Adaptive Computation
Straightforward heat equation solution using Jacobi iteration

• Problem setup – unit square, all boundaries have temperature 0, fixed heat
source with temperature 2 at (4

5
, 4

5
) and temperature -2 at (1

5
, 4

5
)

t=0 on all boundaries

t=−2 at (0.2,0.8) t=2 at (0.8,0.8)

• Approach: at each iteration, the new solution value is the average of neigh-
bors’ solution values

• By no means is this the most efficient technique, but it is simple enough to
understand and demonstrates the important ideas



A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.
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A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.
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A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.
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A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.
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A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Uniform distribution of 16,384 points, 1302 iterations, total 21,331,968 steps



A Simple Adaptive Computation
The number of solution points determines how accurate the solution can be.
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A Simple Adaptive Computation
But there’s no need for all those points away from the heat source!
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A Simple Adaptive Computation
How do we get there?
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Large-scale Rayleigh-Taylor Instability
• Department of Energy/ASCI project

– University of Chicago
– Argonne National Laboratory
– Rensselaer Polytechnic Institute

• Goal: model a deflagration leaving the surface of a compact star

– Long term: simulate thermonuclear flashes in astrophysical
bodies (neutron stars, white dwarves)

– Study Rayleigh-Taylor instabilities
– Ideal gases: ρ = 2 on top, ρ = 1 on bottom
– Sinusoidal velocity perturbation with magnitude 0.05

• Parallel adaptive solution

– Discontinuous Galerkin solution of the Euler equations
–Woodward and Colella flux
– Similar accuracy without adaptivity would require orders of
magnitude more work [Animations]



Parallel Strategy
• Dominant paradigm: Single Program Multiple Data (SPMD)

– distributed memory; communication via message passing

• Can run the same software on shared and distributed memory systems
• Adaptive methods necessitate linked structures

– automatic parallelization is difficult

• Explicitly distribute the computation via a domain decomposition

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

• Distributed structures complicate matters

– interprocess links, boundary structures, migration support
– very interesting issues, but not today’s focus



Mesh Partitioning
• Determine and achieve the domain decomposition

• “Partition quality” is important to solution efficiency

– evenly distribute mesh elements (computational work)
– minimize elements on partition boundaries (communication volume)
– minimize number of “adjacent” processes (number of messages)

• But.. this is essentially graph partitioning: “Optimal” solution intractable!



Why dynamic load balancing?
Need a rebalancing capability in the presence of:

• Unpredictable computational costs

– Multiphysics
– Adaptive methods

Initial balanced partition Adaptivity introduces imbalance Migrate as needed Rebalanced partition

• Non-dedicated computational resources
• Heterogeneous computational resources of unknown relative powers



Load Balancing Considerations

• Like a partitioner, a load balancer seeks

– computational balance
– minimization of communication and number of messages

• But also must consider

– cost of computing the new partition
∗ may tolerate imbalance to avoid a repartition step

– cost of moving the data to realize it
∗ may prefer incrementality over resulting quality

• Must be able to operate in parallel on distributed input

– scalability

• It is not just graph partitioning – no single algorithm is best for all situations
• Several approaches have been used successfully



Geometric Mesh Partitioning/Load Balancing
Use only coordinate information

• Most commonly use “cutting planes” to divide the mesh

Cutting Plane
Subdomain 2Subdomain 1

• Tend to be fast, and can achieve strict load balance
• “Unfortunate” cuts may lead to larger partition boundaries

– cut through a highly refined region

• May be the only option when only coordinates are available
• May be especially beneficial when spatial searches are needed

– contact problems in crash simulations



Recursive Bisection Mesh Partitioning/Load Balancing
Simple geometric methods

• Recursive methods, recursive cuts determined by

Coordinate Bisection (RCB) Inertial Bisection (RIB)

Cut 2
Cut 2

Cut 1

Cut 1

Cut 2

Cut 2

• Simple and fast
• RCB is incremental
• Partition quality may be poor
• Boundary size may be reduced by a post-processing “smoothing” step



SFC Mesh Partitioning/Load Balancing
Another geometric method

• Use the locality-preserving properties of space-filling curves (SFCs)
• Each element is assigned a coordinate along an SFC

– a linearization of the objects in two- or three-dimensional space

• Hilbert SFC is most effective
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Graph-Based Mesh Partitioning/Load Balancing
Use connectivity information

Partition 3

Partition 0

Partition 1

Partition 2

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

• Spectral methods (Chaco)

– prohibitively expensive and difficult to parallelize
– produces excellent partitions

• Multilevel partitioning (Parmetis, Jostle)

– much faster than spectral, but still more expensive than geometric
– quality of partitions approaches that of spectral methods

• May introduce some load imbalance to improve boundary sizes



Load Balancing Algorithm Implementations

• Again, no single algorithm is best in all situations
• Some are difficult to implement
• Bad: implementation within an application or framework

– likely usable only by a single application
– at best, usable by a few applications that share common data structures
– unlikely that an expert in load balancing is the developer

• Better: implementation within reusable libraries

– load balancing experts can develop and optimize implementations
– application programmers can make use without worrying about details
– but...how to deal with the variety of applications and data structures?

∗ require specific input and output structures
– applications must construct them

∗ data-structure neutral design
– applications only need to provide a small set of callback functions



Zoltan Toolkit
Includes suite of partitioning algorithms, developed at

• General interface to a variety of partitioners and load balancers
• Application programmer can avoid the details of load balancing
• Interact with application through callback functions and migration arrays
– “data structure neutral” design

• Switch among load balancers easily; experiment to find what works best
• Provides high quality implementations of:

– Coordinate bisection, Inertial bisection
– Octree/SFC partitioning (with Loy, Gervasio, Campbell – RPI)
– Hilbert SFC partitioning
– Refinement tree balancing (Mitchell – NIST)

• Provides easier-to-use interfaces for:

– Metis/Parmetis (Karypis, Kumar, Schloegel – Minnesota)
– Jostle (Walshaw – Greenwich)

• Freely available: http://www.cs.sandia.gov/Zoltan/



Typical Computation Flow

Load Balancing Suite

Application Software

OK

done

!OK

!done

Partitioning and Dynamic Load Balancing
Implementations/Support Tools

Evaluate
Error

Adaptive
Step

Setup/Initial
Partitioning

Rebalance
Load

Compute



Example Parallel Adaptive Software
We wish to run several applications.

• Rensselaer’s “LOCO”

– parallel adaptive discontinuous Galerkin solution
of compressible Euler equations in C.

– using Parallel Mesh Database
– “perforated shock tube” problem

• Rensselaer’s “DG”

– also discontinuous Galerkin methods, but in C++
– using Algorithm-Oriented Mesh Database
– Rayleigh-Taylor flow instabilities and others

• Mitchell’s PHAML

– Fortran 90, adaptive solutions of various PDEs

• Simmetrix, Inc. MeshSim-based applications
• Real interest for parallel computing is in 3D transient
problems

Shock
Tube

Vent



Target Computational Environments

• FreeBSD Lab, Williams CS: 12 dual 2.4 GHz Intel Xeon processor systems
• Bullpen Cluster, Williams CS: 13 node Sun cluster, total of 4 300 MHz and
21 450 MHz UltraSparc II processors

• Dhanni Cluster, Williams CS: 8 nodes, each with 2 dual-core 2.8 GHz Intel
Xeon processors

• Medusa Cluster, RPI: 32 dual 2.0GHz Intel Xeon processor systems
• ASCI-class supercomputers: large clusters of SMPs
• System X, Virginia Tech: 1100 dual 2.3 GHzApple G5 nodes, 12.25 TeraOps
• TeraGrid – NSF’s Internet “Grid Computer”: nodes at NCSA, San Diego
Supercomputing Center, Argonne National Laboratory, Caltech, and the
Pittsburgh Supercomputer Center, peak projected performance 40 TeraOps

This is just a small sample of the wide variety of systems in use.

• long-term “resource-aware computation” goal: software that can run effi-
ciently on any of them

• work described here is one step toward this goal, current focus on systems
found at places like Williams



Resource-Aware Computing Motivations

• Heterogeneous processor speeds

– seem straightforward to deal with
– does it matter?

• Distributed vs. shared memory

– some algorithms may be a more appropriate choice than others

• Non-dedicated computational resources

– can be highly dynamic, transient
– will the situation change by the time we can react?

• Heterogeneous or non-dedicated networks
• Hierarchical network structures

– message cost depends on the path it must take

• Relative speeds of processors/memory/networks

– important even when targeting different homogeneous clusters



What Can Be Adjusted?

• Choice of solution methods and algorithms

– different approaches for multithreading vs. distributed memory

• Parallelization paradigm

– threads vs.message passing vs.actor/theater model vs.hybrid approaches
– “bag-of-tasks” master/slave vs. domain decomposition

• Ordering of computation and/or communication
• Replication of data or computation
• Communication patterns (e.g., message packing)
• Optimal number of processors, processes, or threads

– not necessarily one process/thread per processor

• Our focus: partitioning and dynamic load balancing

– tradeoffs for imbalance vs. communication volume
– variable-sized partitions
– avoid communication across slowest interfaces



Bullpen Cluster at Williams College
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All nodes contain (aging) Sun UltraSparc II processors

http://bullpen.cs.williams.edu/



Resource-Aware Load Balancing

• Goal: account for environment characteristics in load balancing
• Idea: build a model of the computing environment and use it to guide load
balancing

– represent heterogeneity and hierarchy
∗ processor heterogeneity, SMP
∗ network capabilities, load, hierarchy

– static capability and dynamic monitoring feedback

• Use existing load balancing procedures to produce, as appropriate

– variable size partitions
– “hierarchical” partitions

• Longer-term: tailor other parts of the computation to the environment
• Alternate approach: process-level or system-level load balancing



DRUM: Dynamic Resource Utilization Model

M
Rensselaer

Williams

D R U
• Run-time model encapsulates the details of the execution environment
• Supports dynamic load balancing for environments with

– heterogeneous processing capabilities
– heterogeneous network speeds
– hierarchical network topology
– non-dedicated resources

• Not dependent on any specific application, data structure, or partitioner

http://www.cs.williams.edu/drum/



Computation Flow with DRUMMonitoring

Load Balancing Suite
Partitioning and Dynamic Load Balancing
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DRUM: Dynamic Resource Utilization Model

CPU CPU CPU

CPU0 ...

Network 2

CPU2CPU1 CPU3 CPU2CPU1 CPU3CPU0

MemoryMemory

Network 1

Memory

MemoryMemory

N2UP UP UP

SMP SMPSMP

N1

...

Computing Environment Machine Model

• Tree structure based on network hierarchy
• Computation nodes, assigned “processing power”

– UP – uniprocessor node
– SMP – symmetric multiprocessing node

• Communication nodes

– network characteristics (bandwidth, latency)
– assigned a processing power as a function of children



DRUM: Dynamic Resource Utilization Model

• Static capabilities

– gathered by benchmarks or specified manually once per system
– processor speeds, network capabilities and topology

• Dynamic performance monitoring

– gathered by “agent” threads managed through a simple API
– communication interface (NIC) monitors

∗ monitor incoming and outgoing packets and/or available bandwidth
– CPU/Memory monitors

∗ monitors CPU and memory usage and availability

• Combine static capability information and dynamic monitoring feedback
• Straightforward to use powers to create weighted partitions with existing
procedures

• Optional Zoltan interface allows use by applications with no modifications
• More details and computational results in recent papers:
Applied Numerical Mathematics, 52(2-3), pp. 133-152, 2005
Computing in Science & Engineering, 7(2), pp. 40-50, 2005


