Computer Science 400

Parallel Processing
Siena College

SIENAcollege Fall 2008

Topic Notes: POSIX Threads

Before considering our first parallelization paradigm, PO8ireads, we will think about what
code can be parallelized and how we can find opportunitiesdocurrency.
Finding Concurrency

We find opportunities for parallelism by looking for partstbé sequential program that can be run
in any order.

Before we look at the matrix-matrix multiply, we step back &k at a simpler example:

=Y
o

[T

w o1

js)

NN RE
9 T O T

Q !

F_.

(@)

~owNe W

o
=
5

Which statements can be run in a different order (or conctlyelut still produce the same an-
swers at the end?

1 has to happen before 2 and 3, since they deperadi@ving a value.

2 and 3 can happen in either order.

4 has to happen after 2, but it can happen before 3.

5 has to happen after 2 and 3, but can happen before 4.

6 has to happen after 4 (so 4 doesn’t clobber its value) ard &ftoecause it depends on its
value)

7 has to happen last.

This can be formalized into a set of rules calBérnstein’s conditionso determine if a pair of
tasks can be executed in parallel:

Two tasksP; and P, can execute in parallel if all three of these conditions hold

1. IlmOQZQ
2. IQﬂOlz@

CSIS 400 Parallel Processing Fall 2008

3. Olm02:®

wherel; andO; are the input and output sets, respectively, for tadernstein, 1966). Theput
setis the set of variables read by a task anddh#put seis the set of variables modified by a task.

Back to our example, let's see what can be done concurrently.

/* initialize matrices, just fill with junk */
for (i=0; i1<SIZE;, i++) {
for (j=0; j<SIZE;, j++) {
a[i][j] = i+j;
bli][j] =1i-j;
}
}

[+ matrix-matrix multiply =*/
for (i=0; i<SIZE; i++) { [* for each row */
for (j=0; j<SIZE;, j++) { /* for each columm =*/
[+ initialize result to 0 */
c[ill[i]l = 0;

/ = perform dot product =*/
for(k=0; k<SIZE;, k++) {
\ clillil =clillil + ali][kl*b[KkI[j];
}
}

sum=0;
for (i=0; i<SIZE, i++) {
for (j=0; j<SIZE, j++) {
sum += c[i][j];
}
}

The initialization can all be done in any order — eacaAndj combination is independent of each
other, and the assignmentaffi] [j] andb[i][]j] can be done in either order.

In the actual matrix-matrix multiply, eaat{ i] [j] must be initialized to O before the sum can
start to be accumulated. Also, iteratikrof the inner loop can only be done after rowof a and
columnj of b have been initialized.

Finally, thesumcontribution of eaclke[i][j] can be added as soon astbpi] [j] has been
computed, and aftesumhas been initialized to O.

Thatgranularity seems a bit cumbersome, so we might step back and just sayeltain initialize
a andb in any order, but that it should be completed before we startputing values irc. Then

2

CSIS 400 Parallel Processing Fall 2008

we can initialize and compute eachi] [j] in any order, but we do not start accumulatsigm
until ¢ is completely computed.

But all of these dependencies in this case can be determinaddigtively straightforward com-
putation. Seems like a job for a compiler!

In the example, if we add the flagcpar al | el to the compile command, the Sun compiler will
determine what can be done in parallel and generate codgpmsut. With this executable, we
can request a number of parallel processes by setting theoement variablePARALLEL. For
example:

set env PARALLEL 4

One of our goals is to use parallelism to solve a problem moiekty than we could solve it on a
single processor executing a sequential program. We wikddd see sspeedupf our program
as we add processors.

Quinn defines speedup artficiencyon p. 160.

Sequential execution time

Speedup =
P P Parallel execution time

Sequential execution time

Efficiency =
Y Processors Used x Parallel execution time

We can define these more formally using Quinn’s notation:

e \We measure performance in terms of a problem sizand a number of processors usgd,
e o(n) is the time for the inherently sequential part of the program

(n)
e ¢(n) is the time for the parallelizable part of the program.
¢ x(n) is the time for the overhead introduced by a parallel exeauti
(n)

e o(n) + ¢(n) is the sequenial running time.
¢(n)
p
e (n,p) is the speedup:

e o(n)+ + x(n) is the ideal parallel running time.

a(n) +¢(n)

vimp) < o(n) + 220 1 ()

Note that we use<” because “=" would require a perfect distribution of work ang the
processors, which we will see is very difficult to achieve iany cases.

3

CSIS 400 Parallel Processing Fall 2008

e ¢(n,p) is the efficiency:

or

o(n) + ¢(n)
po(n) + ¢(n) + pr(n)

e(n,p) <

An efficient program is one that exhibiisear speedup — double the number of processors, halve
the running time.

The theoretical upper bound on speedupfprocessors ig. Anything greater is calleduperlin-
ear speedup- can this happen?

Try this out. Compile the matrix-matrix multiplication exafe with the- xpar al | el flag on
bul | pen and run it with thePARALLEL environment variable to numbers from 1-4. How does
this affect the running time? Now, run this version of thegseom on a 2-processor Solaris node,
again with values oPARALLEL ranging from 1-4. Finally, run on a 4-processor node andegang
PARALLEL between 1 and 8. What are the running times you get? Why?

Note: Normally, it would be best to run these through a quagisystem to ensure exclusive access
to the nodes, but given the small class size, we are unlikdiatve a problem.

We will return to this example and parallelize it by hand.
Not everything can be parallelized by the compiler:
See:/ cluster/exanpl es/matnult serial .init

The new initialization code:

for (i=0; i<SIZE i++) {
for (j=0; j<SIZE, j++) {
if ((i =0 || (i ==0)) {

ali][j] = i+j;

bli][j] =1i-];

}

el se {

afi][i] =ali-1][j-1] + 1 +J;
} b[i][j] =Db[i-1][j-1] +i - j;

can’t be parallelized, so no matter how many processors ketat it, we can’t speed it up.

4

CSIS 400 Parallel Processing Fall 2008

We can see this by repeating our experiment on the 4-processte. The initialization time
remains the same regardless of the number of processors\Weetill get good speedups for our
matrix-matrix multiplication.

Amdahl’s Law

Any parallel program will have some fractighthat cannot be parallelized, leaviig — f) that
may be parallelized. This means that at best, we can expecingi time onp processors to be
f+5E

From this, we can statmdahl’s Lawin terms of maximum achievable speedup:

1
=
f+=

Y <

This is an important equation to keep in mind when deternginitnether to make the effort to
parallelize a program, and how many processors are likdig toworthwhile to use to execute it.

Approaches to Parallelism

Automatic parallelism is great, when it's possible. We gdor free (at least once we bought the
compiler)! It does have limitations, though:

e some potential parallelization opportunities cannot bieated automatically — can add di-
rectives to help (OpenMP — soon)
e bigger complication — this executable cannot run on dista-memory systems

Parallel programs can be categorized by how the cooperptimgesses communicate with each
other:

e Shared Memory — some variables are accessible from multiple processesdiriReand
writing these values allow the processes to communicate.

e Message Passing communication requires explicit messages to be sent froenpoocess
to the other when they need to communicate.

These are functionally equivalent given appropriate dpegasystem support. For example, one
can write message-passing software using shared memosgrects, and one can simulate a
shared memory by replacing accesses to non-local memonyangeries of messages that access
or modify the remote memory.

The automatic parallelization we have seen to this poinsissmed memory parallelization, though
we don’t have to think about how it's done. The main implioatis that we have to run the
parallelized executable on a computer with multiple preoes

Our first tool for explicit parallelization will be shared mery parallelism using threads.

A Brief Intro to POSIX threads

CSIS 400 Parallel Processing Fall 2008

Multithreading usually allows for the use of shared mema¥jany operating systems provide
support for threads, and a standard interface has beerogedePOSIX Threadsr pthreads

A good online tutorial is available &t t ps: / / conmputi ng. | I nl . gov/ conmputi ng/tutorial s/
pt hr eads/ .

You read through this and remember that it's there for refeze
A Google search for “pthread tutorial” yields many others.

Pthreads are available on the Solaris nodes in the clusigiai@ standard on most modern Unix-
like operating systems.

The basic idea is that we can create and destroy threadsaftex@in a program, on the fly, during
its execution. These threads can then be executed in pdrpltee operating system scheduler.
If we have multiple processors, we should be able to achiesfgeadup over the single-threaded
equivalent.

We start with a look at a pthreads “Hello, world” program:
See:/ cl ust er/ exanpl es/ pt hreadhel | 0

The most basic functionality involves the creation andesion of threads:

e pt hread_creat e(3THR) — This creates a new thread. It takes 4 arguments. The first
is a pointer to a variable of typpt hr ead_t . Upon return, this contains a thread iden-
tifier that may be used later in a call pd hr ead_j oi n(). The second is a pointer to a
pt hr ead_at t r _t structure that specifies thread creation attributes. Ipthe eadhel -
| o program, we pass iNULL, which will request the system default attributes. Thedhir
argument is a pointer to a function that will be called whemnttiread is started. This function
must take a single parameter of typei d * and returnvoi d *. The fourth parameter is
the pointer that will be passed as the argument to the threadion.

e pt hread_exi t (3THR) — This causes the calling thread to exit. This is called iniiyi
if the thread function called during the thread creationnmd. Its argument is a return status
value, which can be retrieved Ipg hr ead_j oi n() .

e pt hread_j oi n(3THR) — This causes the calling thread to block (wait) until thee#a
with the identifier passed as the first argumengtttir ead_j oi n() has exited. The second
argument is a pointer to a location where the return statsisgqubtpt hr ead _exi t () can
be stored. In th@t hr eadhel | o program, we pass iNULL, and hence ignore the value.

Prototypes for pthread functions are ph hr ead. h and programs need to link withi bp-
t hr ead. a (use- | pt hr ead at link time). When using the Sun compiler, thet flag should
also be specified to indicate multithreaded code.

A slightly more interesting example:

See:/ cl ust er/ exanpl es/ proctree_t hreads

This example builds a “tree” of threads to a depth given orctimamand line. It includes calls to
pt hr ead_sel f (). This function returns the thread identifier of the callihgead.

6

CSIS 400 Parallel Processing Fall 2008

Try it out and study the code to make sure you understand heworks.

A bit of extra initialization is necessary to make sure thstegn will allow your threads to make
use of all available processors. It may, by default, alloly @me thread in your program to be
executing at any given time. If your program will create umtooncurrent threads, you should
make the call:

pt hr ead_set concurrency(n+1);

somewhere before your first thread creation. The “+1” is Bddd account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the secapdhaent topt hr ead_cr eat e() .
To do this, declare a variable for the attributes:

pthread _attr _t attr;
and initialize it with:
pthread attr_init(&attr);
and set parameters on the attributes with calls such as:
pthread _attr_setscope(&attr, PTHREAD SCOPE_PROCESS);

| recommend the above setting for threads in Solaris.
Then, you can pass &at t r as the second parametemtbhr ead _creat e() .

Any global variables in your program are accessible to akdds. Local variables are directly
accessible only to the thread in which they were createdjgihhdhe memory can be shared by
passing a pointer as part of the last argumemittor ead _cr eat e() .

Brief Intro to Critical Sections

As you may have been shown in other contexts, concurrensadoeshared variables can be
dangerous.

Consider this example:
See:/ cl ust er/ exanpl es/ pt hr ead_danger

Run it with one thread, and we get 100000. What if we run it withr2ads? On a multiprocessor,
it is going to give the wrong answer! Why?

The answer is that we have concurrent access to the shaiatlgaount er . Suppose that two
threads are each about to exeouteint er ++, what can go wrong?

7

CSIS 400 Parallel Processing Fall 2008

count er ++ really requires three machine instructions) lpad a register with the value of
count er’'s memory location,) increment the register, andi4{) store the register value back
in count er’s memory location. Even on a single processor, the opgatistem could switch
the process out in the middle of this. With multiple processthe statements really could be
happening concurrently.

Consider two threads running the statements that madifynt er :

Thread A | Thread B
A; RO = counter; B; Rl = counter;
A, RO = RO + 1; B, RlL =Rl + 1;

As counter = RO; Bs; counter = R1;

Consider one possible ordering; A, B; As By Bs , wherecount er =17 before starting. Uh
oh.

What we have here israce conditiorthat can lead tinterferenceof the actions of one thread with
another. We need to make sure that when one process starifyingpdount er , that it finishes
before the other can try to modify it. This requigsichronizatiorof the processes.

When we run it orbul | pen, a single-processor system, the problem is unlikely to sitesif -
we almost certainly the correct sum when we run it. Howewerd is no guarantee that this would
be the case. The operating system could switch threads mitt#ie of the load-increment-store,
resulting in a race condition and an incorrect result. Teyghogram orbul | pen with dozens of
threads and you might start to run into problems.

We need to make those statements that incremeunnt er atomic We say that the modification
of count er is acritical section

There are many solutions to the critical section problemtargdis a major topic in an operating
systems course. But for our purposes, at least for now, iffiiegunt to recognize the problem, and
use available tools to deal with it.

The pthread library provides a construct callechatex(short for themutual exclusiorthat we
want to enforce for the access of theunt er variable) allows us to ensure that only one thread
at a time is executing a particular block of code. We can utefik our “danger” program:

See:/ cl ust er/ exanpl es/ pt hr ead_nodanger

We declare a mutex like any other shared variable. It is o pfphr ead_nut ex_t . Four func-
tions are used:

pt hr ead_nmut ex_i ni t (3THR) —initialize the mutex and set it to the unlocked state.

pt hr ead_mut ex_| ock(3THR) —request the lock on the mutex. If the mutex is unlocked,
the calling thread acquires the lock. Otherwise, the thisddocked until the thread that
previously locked the mutex unlocks it.

pt hr ead_mut ex | ock(3THR) — unlock the mutex.

pt hr ead_mut ex _dest r oy(3THR) — destroy the mutex (clean up memory).

A few things to consider about this:

CSIS 400 Parallel Processing Fall 2008

Why isn’t the access to the mutex a problem? Isn’t it just a sheed variable itself? — Yes, it's

a shared variable, but access to it is only through the pth#4d. Techniques that are discussed in
detail in an operating systems course (and that we may disnoge here) are used to ensure that
access to the mutex itself does not cause a race condition.

Doesn’t that lock/unlock have a significant cost?- Let’s see. We can time the programs we've
been looking at:

See:/ cl ust er/ exanpl es/ pt hr ead_danger _ti ned
See:/ cl ust er/ exanpl es/ pt hr ead_nodanger _ti ned

Try these out. What are the running times of each version?aperthe cost is too much if we're
going to lock and unlock that much. Maybe we shouldn’t do seimlocking and unlocking. In
this case, we're pretty much just going to lock again as ssomeacan jump back around through
thef or loop again.

This is a good example of the parallel overhead we mentioadte(thex(n, p) term in Quinn’s
formulas).

Here’s an alternative:
See:/ cl ust er/ exanpl es/ pt hr ead_nodanger coar se

In this case, the coarse-grained locking (one thread gettvalds the lock for a long time) should
improve the performance significantly. How fast does it raw® But at what cost? We've

completely serialized the computation! Only one threadamnally be doing something at a time,
so we can'’t take advantage of multiple processors. If thenfmatation” was something more
significant, we would need to be more careful about the geaitylof the locking.

