
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: POSIX Threads

Before considering our first parallelization paradigm, POSIX threads, we will think about what
code can be parallelized and how we can find opportunities forconcurrency.

Finding Concurrency
We find opportunities for parallelism by looking for parts ofthe sequential program that can be run
in any order.

Before we look at the matrix-matrix multiply, we step back andlook at a simpler example:

1: a = 10;
2: b = a + 5;
3: c = a - 3;
4: b = 7;
5: a = 3;
6: b = c - a;
7: print a, b, c;

Which statements can be run in a different order (or concurrently) but still produce the same an-
swers at the end?

• 1 has to happen before 2 and 3, since they depend ona having a value.
• 2 and 3 can happen in either order.
• 4 has to happen after 2, but it can happen before 3.
• 5 has to happen after 2 and 3, but can happen before 4.
• 6 has to happen after 4 (so 4 doesn’t clobber its value) and after 5 (because it depends on its

value)
• 7 has to happen last.

This can be formalized into a set of rules calledBernstein’s conditionsto determine if a pair of
tasks can be executed in parallel:

Two tasksP1 andP2 can execute in parallel if all three of these conditions hold:

1. I1 ∩O2 = ∅

2. I2 ∩O1 = ∅

CSIS 400 Parallel Processing Fall 2008

3. O1 ∩O2 = ∅

whereIi andOi are the input and output sets, respectively, for taski (Bernstein, 1966). Theinput
setis the set of variables read by a task and theoutput setis the set of variables modified by a task.

Back to our example, let’s see what can be done concurrently.

/* initialize matrices, just fill with junk */
for (i=0; i<SIZE; i++) {

for (j=0; j<SIZE; j++) {
a[i][j] = i+j;
b[i][j] = i-j;

}
}

/* matrix-matrix multiply */
for (i=0; i<SIZE; i++) { /* for each row */
for (j=0; j<SIZE; j++) { /* for each column */

/* initialize result to 0 */
c[i][j] = 0;

/* perform dot product */
for(k=0; k<SIZE; k++) {

c[i][j] = c[i][j] + a[i][k]*b[k][j];
}

}
}

sum=0;
for (i=0; i<SIZE; i++) {

for (j=0; j<SIZE; j++) {
sum += c[i][j];

}
}

The initialization can all be done in any order – eachi andj combination is independent of each
other, and the assignment ofa[i][j] andb[i][j] can be done in either order.

In the actual matrix-matrix multiply, eachc[i][j] must be initialized to 0 before the sum can
start to be accumulated. Also, iterationk of the inner loop can only be done after rowi of a and
columnj of b have been initialized.

Finally, thesum contribution of eachc[i][j] can be added as soon as thatc[i][j] has been
computed, and aftersum has been initialized to 0.

Thatgranularityseems a bit cumbersome, so we might step back and just say thatwe can initialize
a andb in any order, but that it should be completed before we start computing values inc. Then

2

CSIS 400 Parallel Processing Fall 2008

we can initialize and compute eachc[i][j] in any order, but we do not start accumulatingsum
until c is completely computed.

But all of these dependencies in this case can be determined bya relatively straightforward com-
putation. Seems like a job for a compiler!

In the example, if we add the flag-xparallel to the compile command, the Sun compiler will
determine what can be done in parallel and generate code to support it. With this executable, we
can request a number of parallel processes by setting the environment variablePARALLEL. For
example:

setenv PARALLEL 4

One of our goals is to use parallelism to solve a problem more quickly than we could solve it on a
single processor executing a sequential program. We would like to see aspeedupof our program
as we add processors.

Quinn defines speedup andefficiencyon p. 160.

Speedup =
Sequential execution time

Parallel execution time

Efficiency =
Sequential execution time

Processors Used × Parallel execution time

We can define these more formally using Quinn’s notation:

• We measure performance in terms of a problem size,n, and a number of processors used,p.

• σ(n) is the time for the inherently sequential part of the program.

• φ(n) is the time for the parallelizable part of the program.

• κ(n) is the time for the overhead introduced by a parallel execution.

• σ(n) + φ(n) is the sequenial running time.

• σ(n) +
φ(n)

p
+ κ(n) is the ideal parallel running time.

• ψ(n, p) is the speedup:

ψ(n, p) ≤
σ(n) + φ(n)

σ(n) + φ(n)
p

+ κ(n)

Note that we use “≤” because “=” would require a perfect distribution of work among the
processors, which we will see is very difficult to achieve in many cases.

3

CSIS 400 Parallel Processing Fall 2008

• ǫ(n, p) is the efficiency:

ǫ(n, p) ≤
σ(n) + φ(n)

p
(

σ(n) + φ(n)
p

+ κ(n)
)

or

ǫ(n, p) ≤
σ(n) + φ(n)

pσ(n) + φ(n) + pκ(n)

An efficient program is one that exhibitslinear speedup – double the number of processors, halve
the running time.

The theoretical upper bound on speedup forp processors isp. Anything greater is calledsuperlin-
ear speedup– can this happen?

Try this out. Compile the matrix-matrix multiplication example with the-xparallel flag on
bullpen and run it with thePARALLEL environment variable to numbers from 1–4. How does
this affect the running time? Now, run this version of the program on a 2-processor Solaris node,
again with values ofPARALLEL ranging from 1–4. Finally, run on a 4-processor node and range
PARALLEL between 1 and 8. What are the running times you get? Why?

Note: Normally, it would be best to run these through a queueing system to ensure exclusive access
to the nodes, but given the small class size, we are unlikely to have a problem.

We will return to this example and parallelize it by hand.

Not everything can be parallelized by the compiler:

See:/cluster/examples/matmult serial init

The new initialization code:

for (i=0; i<SIZE; i++) {
for (j=0; j<SIZE; j++) {
if ((i == 0) || (j == 0)) {

a[i][j] = i+j;
b[i][j] = i-j;

}
else {

a[i][j] = a[i-1][j-1] + i + j;
b[i][j] = b[i-1][j-1] + i - j;

}
}

}

can’t be parallelized, so no matter how many processors we throw at it, we can’t speed it up.

4

CSIS 400 Parallel Processing Fall 2008

We can see this by repeating our experiment on the 4-processor node. The initialization time
remains the same regardless of the number of processors used. We still get good speedups for our
matrix-matrix multiplication.

Amdahl’s Law

Any parallel program will have some fractionf that cannot be parallelized, leaving(1 − f) that
may be parallelized. This means that at best, we can expect running time onp processors to be
f + 1−f

p
.

From this, we can stateAmdahl’s Lawin terms of maximum achievable speedup:

ψ ≤
1

f + 1−f

p

This is an important equation to keep in mind when determining whether to make the effort to
parallelize a program, and how many processors are likely tobe worthwhile to use to execute it.

Approaches to Parallelism
Automatic parallelism is great, when it’s possible. We got it for free (at least once we bought the
compiler)! It does have limitations, though:

• some potential parallelization opportunities cannot be detected automatically – can add di-
rectives to help (OpenMP – soon)

• bigger complication – this executable cannot run on distributed-memory systems

Parallel programs can be categorized by how the cooperatingprocesses communicate with each
other:

• Shared Memory – some variables are accessible from multiple processes. Reading and
writing these values allow the processes to communicate.

• Message Passing– communication requires explicit messages to be sent from one process
to the other when they need to communicate.

These are functionally equivalent given appropriate operating system support. For example, one
can write message-passing software using shared memory constructs, and one can simulate a
shared memory by replacing accesses to non-local memory with a series of messages that access
or modify the remote memory.

The automatic parallelization we have seen to this point is ashared memory parallelization, though
we don’t have to think about how it’s done. The main implication is that we have to run the
parallelized executable on a computer with multiple processors.

Our first tool for explicit parallelization will be shared memory parallelism using threads.

A Brief Intro to POSIX threads

5

CSIS 400 Parallel Processing Fall 2008

Multithreading usually allows for the use of shared memory.Many operating systems provide
support for threads, and a standard interface has been developed:POSIX Threadsor pthreads.

A good online tutorial is available athttps://computing.llnl.gov/computing/tutorials/
pthreads/.

You read through this and remember that it’s there for reference.

A Google search for “pthread tutorial” yields many others.

Pthreads are available on the Solaris nodes in the cluster, and are standard on most modern Unix-
like operating systems.

The basic idea is that we can create and destroy threads of execution in a program, on the fly, during
its execution. These threads can then be executed in parallel by the operating system scheduler.
If we have multiple processors, we should be able to achieve aspeedup over the single-threaded
equivalent.

We start with a look at a pthreads “Hello, world” program:

See:/cluster/examples/pthreadhello

The most basic functionality involves the creation and destruction of threads:

• pthread create(3THR) – This creates a new thread. It takes 4 arguments. The first
is a pointer to a variable of typepthread t. Upon return, this contains a thread iden-
tifier that may be used later in a call topthread join(). The second is a pointer to a
pthread attr t structure that specifies thread creation attributes. In thepthreadhel-
lo program, we pass inNULL, which will request the system default attributes. The third
argument is a pointer to a function that will be called when the thread is started. This function
must take a single parameter of typevoid * and returnvoid *. The fourth parameter is
the pointer that will be passed as the argument to the thread function.

• pthread exit(3THR) – This causes the calling thread to exit. This is called implicitly
if the thread function called during the thread creation returns. Its argument is a return status
value, which can be retrieved bypthread join().

• pthread join(3THR) – This causes the calling thread to block (wait) until the thread
with the identifier passed as the first argument topthread join() has exited. The second
argument is a pointer to a location where the return status passed topthread exit() can
be stored. In thepthreadhello program, we pass inNULL, and hence ignore the value.

Prototypes for pthread functions are inpthread.h and programs need to link withlibp-
thread.a (use-lpthread at link time). When using the Sun compiler, the-mt flag should
also be specified to indicate multithreaded code.

A slightly more interesting example:

See:/cluster/examples/proctree threads

This example builds a “tree” of threads to a depth given on thecommand line. It includes calls to
pthread self(). This function returns the thread identifier of the calling thread.

6

CSIS 400 Parallel Processing Fall 2008

Try it out and study the code to make sure you understand how itworks.

A bit of extra initialization is necessary to make sure the system will allow your threads to make
use of all available processors. It may, by default, allow only one thread in your program to be
executing at any given time. If your program will create up ton concurrent threads, you should
make the call:

pthread_setconcurrency(n+1);

somewhere before your first thread creation. The “+1” is needed to account for the original thread
plus then you plan to create.

You may also want to specify actual attributes as the second argument topthread create().
To do this, declare a variable for the attributes:

pthread_attr_t attr;

and initialize it with:

pthread_attr_init(&attr);

and set parameters on the attributes with calls such as:

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

I recommend the above setting for threads in Solaris.

Then, you can pass in&attr as the second parameter topthread create().

Any global variables in your program are accessible to all threads. Local variables are directly
accessible only to the thread in which they were created, though the memory can be shared by
passing a pointer as part of the last argument topthread create().

Brief Intro to Critical Sections
As you may have been shown in other contexts, concurrent access to shared variables can be
dangerous.

Consider this example:

See:/cluster/examples/pthread danger

Run it with one thread, and we get 100000. What if we run it with 2 threads? On a multiprocessor,
it is going to give the wrong answer! Why?

The answer is that we have concurrent access to the shared variablecounter. Suppose that two
threads are each about to executecounter++, what can go wrong?

7

CSIS 400 Parallel Processing Fall 2008

counter++ really requires three machine instructions: (i) load a register with the value of
counter’s memory location, (ii) increment the register, and (iii) store the register value back
in counter’s memory location. Even on a single processor, the operating system could switch
the process out in the middle of this. With multiple processors, the statements really could be
happening concurrently.

Consider two threads running the statements that modifycounter:

Thread A Thread B
A1 R0 = counter; B1 R1 = counter;
A2 R0 = R0 + 1; B2 R1 = R1 + 1;
A3 counter = R0; B3 counter = R1;

Consider one possible ordering:A1 A2 B1 A3 B2 B3 , wherecounter=17 before starting. Uh
oh.

What we have here is arace conditionthat can lead tointerferenceof the actions of one thread with
another. We need to make sure that when one process starts modifying counter, that it finishes
before the other can try to modify it. This requiressynchronizationof the processes.

When we run it onbullpen, a single-processor system, the problem is unlikely to showitself -
we almost certainly the correct sum when we run it. However, there is no guarantee that this would
be the case. The operating system could switch threads in themiddle of the load-increment-store,
resulting in a race condition and an incorrect result. Try the program onbullpen with dozens of
threads and you might start to run into problems.

We need to make those statements that incrementcounter atomic. We say that the modification
of counter is acritical section.

There are many solutions to the critical section problem andthis is a major topic in an operating
systems course. But for our purposes, at least for now, it is sufficient to recognize the problem, and
use available tools to deal with it.

The pthread library provides a construct called amutex(short for themutual exclusionthat we
want to enforce for the access of thecounter variable) allows us to ensure that only one thread
at a time is executing a particular block of code. We can use itto fix our “danger” program:

See:/cluster/examples/pthread nodanger

We declare a mutex like any other shared variable. It is of typepthread mutex t. Four func-
tions are used:

• pthread mutex init(3THR) – initialize the mutex and set it to the unlocked state.
• pthread mutex lock(3THR) – request the lock on the mutex. If the mutex is unlocked,

the calling thread acquires the lock. Otherwise, the threadis blocked until the thread that
previously locked the mutex unlocks it.

• pthread mutex lock(3THR) – unlock the mutex.
• pthread mutex destroy(3THR) – destroy the mutex (clean up memory).

A few things to consider about this:

8

CSIS 400 Parallel Processing Fall 2008

Why isn’t the access to the mutex a problem? Isn’t it just a shared variable itself? – Yes, it’s
a shared variable, but access to it is only through the pthread API. Techniques that are discussed in
detail in an operating systems course (and that we may discuss more here) are used to ensure that
access to the mutex itself does not cause a race condition.

Doesn’t that lock/unlock have a significant cost?– Let’s see. We can time the programs we’ve
been looking at:

See:/cluster/examples/pthread danger timed

See:/cluster/examples/pthread nodanger timed

Try these out. What are the running times of each version? Perhaps the cost is too much if we’re
going to lock and unlock that much. Maybe we shouldn’t do so much locking and unlocking. In
this case, we’re pretty much just going to lock again as soon as we can jump back around through
thefor loop again.

This is a good example of the parallel overhead we mentioned earlier (theκ(n, p) term in Quinn’s
formulas).

Here’s an alternative:

See:/cluster/examples/pthread nodanger coarse

In this case, the coarse-grained locking (one thread gets and holds the lock for a long time) should
improve the performance significantly. How fast does it run now? But at what cost? We’ve
completely serialized the computation! Only one thread canactually be doing something at a time,
so we can’t take advantage of multiple processors. If the “computation” was something more
significant, we would need to be more careful about the granularity of the locking.

9

