Computer Science 400
Parallel Processing

SIENAcollege all 2008

Topic Notes: Parallel Algorithms

Algorithm Design for Distributed Memory

When programming for a message-passing/distributed-meemwironment, we have several con-
siderations that will drive our approach:

e distribute the computational workload among the processes

e distribute the memory requirements among the processes

e Mminimize the interprocess communication

minimize the number of messages

minimize the volume of data transferred

maximize message concurrency

minimize the number of neighbors with which communicatieneeded

Recall that our motivations for parallel processing may Itleeeicomputational speedup, compu-
tational scaling, or both.

When the motivation is on speedup, we want to focus on a bajlaosmputational workload.
When the motivation is scaling, we want to balance and mirerthe per-process memory usage.

We always want to reduce communication as much as we carg giatis pure overhead intro-
duced by our parallel implementation.

Foster’'s Design Methodology

lan Foster suggests a design approach for parallel algod#sign. His four steps:

1. Partition the problem by dividing it into pieces that we’ll cadiimitive tasks.

2. Determine how the primitive tasks need to communicatk egich other. These can be

e local communication where a primitive task will need information from some of its
neighbors to continue computation,

e global communication where many or all primitive tasks need to contribute.

3. Agglomerate the primitive tasks into groups that will be assigned togeth a processor.

CSIS 400 Parallel Processing Fall 2008

e We can reduce communication by agglomerating tasks thathwaed to communicate
with each other

4. Map the agglomerated tasks to processors.

¢ If the number of agglomerated tasks is equal to the numberoaissors, this is easy.

e If there are more agglomerated tasks than processors, \Wweapl them to balance the
load and minimize communication

Let’s think about this in terms of our Game of Life simulation

Here, we can consider one update of one cell to be a primaiske. tEach primitive task needs to
communicate with the task representing itself in the pnevistep and the tasks representing each
of its 8 neighbors from the previous step to perform its updat

One thing we probably realized before but which is clear ftbencommunication pattern is that
we cannot do tasks in iteration 2 until at least some of thestaem iteration 1 are completed.

So an obvious first agglomeration is to group all tasks that@sponsible for a given cell over all
iterations.

Our implementation, however, continues to agglomerate gkvap all primitive tasks that repre-
sent a row of our simulation.

We take it a step further and agglomerate the rows to form aoeui tasks equal to the number
of processes we’ll start.

So we have a model for what we implemented. Let’'s analyze it.

Let x represent the time needed to computé; ;, given values ofcell; 1 j_1 -1, cell; j—14-1,
C€”i+1,j—1,t—1, Celli—l,j,t—la Ce”i,j,t—l, C€llz‘+1,j,t—1, Celli—l,j+1,t—1, Cellz‘,j+1,t—1, andcelli—l—Lj—l—l,t—l-

Using a single processor to compute titecells for one iteration requires’y time. To compute
m iterations, we nee¢hn?y time.

Using p processors with the decomposition we described previpusycan perform our groups
of rows concurrently. Thus, the time for one iteratioﬁfrs(. If n does not divide evenly by, we
will have more rows assigned to some processors, so we useakienum, denoted bf/”?ﬂx, to
represent our per-iteration computational cost.

However, we have introduced communication costs. Let’s tepresent the cost to send one value
from one process to another. For each iteration, we neechtbas®l receive either one or two rows
to our neighbors. So at a maximum, we will sendvalues at a cost dfn\.

This gives us a cost model for our parallel implementation:

m((%ﬁb{ + 2nA)

There is an additional cost for the message passing that veertta accurately accounted for. We
don’t send2n messages, each with a cost\olit each step — we send 2 messages of length

2

CSIS 400 Parallel Processing Fall 2008

There are two parts to the cost of sending a message:

e latency — the cost of sending any message

e bandwidth — the cost of sending a given amount of data in a message

Sending 100 messages of size 1 is much more expensive thdmgenmessage of size 100,
mainly because we incur the latency cost once per message thwbandwidth cost is the same.

If our communication system has a bandwidth capability afypically measured in units such as
MB/sec, we can express the cost of sending a message of aizk + 3

Applying this to our cost model for the Game of Life, we have thmessages of sizeat each
step to get:

m({”{umm)

3
Sieve of Eratosthenes

Chapter 5 of Quinn describes a method for finding prime numtsdlsd theS eve of Eratosthenes.
This will be the first of a few problems we’ll use to refine ouradéelization skills.

We first consider what would be the primitive tasks. The nraglaf the multiples of a particular
value is at the heart of the computation, and it is these mgskihat are the primitive tasks.

A data decomposition is most natural here, since our arraadidate primes can be distributed.
We will associate a single task with each of the candidatagsi

Of course, we know from our experiences so far that we wildneegroup these tasks appropri-
ately. There are two main options, each of which we've seeharOpenMP context: interleaved
decomposition, and block decomposition.

If we want to agglomeratg tasks from our array of numbers, there are quickly some problems
with the interleaved decomposition. So we use a block deositipn, assigning aboulgt entries
to each.

In many of our examples, we have used block decompositionkdue further assumed that we
could dividen by p evenly. Section 5.4 in Quinn does not make this assumption.

So, our approach:

e distribute then-element “sieve” array, initialize to 0’s (unmarked)
e start withk=2
e while (k<=sqgrt(n))

— mark all local multiples ok

CSIS 400 Parallel Processing Fall 2008

— compute nexk (next unmarked)

e print the resulting primes

We make a further assumption that all valuekokill be found by our master process. This is
valid as long as: > p?, which is a perfectly reasonable assumption (though ougrara should
check it). This means we always know that the master procassind the next value dt and
broadcast it to the others.

Quinn has a detailed analysis of this algorithm that is warkbok.
Once we have a version that does the broadcast, can we dkmivae broadcast?

We can, by usingeplicated computation. As long as we assume that>> p?, there seems to
be little harm in having a second little array replicated anteprocess that computes the primes
between 2 and/n.

This eliminates the cost of the broadcast, but is it wortmgdhe replicated computation? Well,

we already had to wait on all other processes for the mastartgpute the next prime. So there’s
really no time lost there — the others were just waiting inliheadcast operation anyway. The cost
is in additional memory usage, which is small for large erfrougjues ofn.

Quinn suggests a further enhancement that tries to achedter lsache utilization. By reordering
our loops to mark multiples of all primes within a given suiiya, we can keep data in cache
longer, which is often the most significant factor affectpegformance of our programs.

Finally, Quinn exercise 5.9 suggests a functional decortippsapproach and 5.10 asks you to
name some disadvantages.

Floyd’s Algorithm

Many computationally and memory intensive problems ingajvaph structures and computations
on those graph structures. We will consider one for now.

First, recall the definition of a graph:

A graph G is a collection ofnodes or vertices, in a setV/, joined byedgesin a setE. Vertices
typically have labels. Edges can also have labels (ofteghts).

The graph structure represents relationships (the edges)a@the objects stored (the vertices).

CSIS 400 Parallel Processing Fall 2008

F

Graphs can bdirected or undirected. In a directed graph, each edge represents a one-way connec-
tion. For undirected graphs, edges connect two verticesawyt

Chapter 6 of Quinn examin€3oyd's Algorithm, which is used to solve the all-pairs shortest paths
problem for a directed graph.

See Figure 6.1 in Quinn for an example of a graph and its reptagon as aadjacency matrix,
then a solution to the all-pairs shortest path problem.

The procedure works by numbering the vertices of the geapty, ..., v,. We start by setting the
“pest known” distance between andv, as the weight of the edge betwegrandv,, if it exists,
oo otherwise. Then we consider paths fropto v; that pass through,. The shortest path is now
either the weight of the edge from to v; or a path fromw; to v; to v;. Then, we consider paths
that includeuv,, thenvs, and so on. At step, we need to check if the path fromto v, followed
by the path fromy;, to v; is shorter than the best (so far) known path frano v;.

This is implemented with a triple-nested for-loop, so theaderersion ofO(n?). Below, A is the
adjacency matrix of the graph, aidlis the matrix of shortest paths:

/1 intialize matrix a with edge wei ghts where they exist,
/1 with MAXINT where they do not
for (k=0; k<n; k++)
for (i=0; i<n; i++)
for (j=0; j<n; j++)
a[i][j] = mn(ali][j], a[i][k]+a[k][j]);

/'l entries of a now contain |ength of shortest paths

What about parallelization?

Our primitive tasks will be the? entries of the matrix, and each primitive task doesititerations
for its entry.

Let's start by thinking about how an algorithm would work i€wadn? processors, one for each
of these primitive tasks.

CSIS 400 Parallel Processing Fall 2008

At first, let’s not worry about data distribution. Suppose have a shared memory environment.
Can we do the primitive tasks in any order?

It might not seem so at first, since at iteratigrwe need to make sure we don’t change the values
we’re using during this iteration before we make use of them.

The reason for this is that we are using only values in koand columnk at during iteratiork.
Values in rowk will not change during iteratiok since the assignment for entries i réws:

a[k][J] = mn(a[k][j], a[k][k]+a[k][j])

But all of our values are positive, so there is no way the abasgement can change entry
a[k][j].

A similar argument shows that values in columwill not change during iteratioh.

Thus, we can perform the assignments at a given iterationyiroeder and/or concurrently.

With shared memory and threads, this is simple - just pdiadl@ur innerf or loops and we’re
set.

With message passing and distributed memory, matters keowre complex.

Eacha[i][]j] will be owned by a process. What other information does thatgss need to
perform the update of its own data element at iteratidn

It needs the value in row from its column and from columh in its row.

This boils down to this procedure:

for (k=0; k<n; k++) {
each process P[K][j] broadcasts its value to the P[+x][]j] processes
each process P[i][k] broadcasts its value to the P[i][*] processes
each process waits to receive the needed val ues
each process P[i][]j] conputes its new a[i][]]

So every process participates in 2 broadcasts of a single ¥ah processes at each iteration, plus
its small computation.

Even assuming all communication can occur concurrentily,isha lot of communication.
Our cost using the cost model from Quinn:

Let x be the cost of an entry update. Our computation time in eachtion isy, since alln?
operations are happening concurrently. The communicabshis2 log n\, since we have to wait
for 2 broadcasts amongprocesses of a single value.

So overn iterations, our cost is:

CSIS 400 Parallel Processing Fall 2008

n(x + 2logn\)

Most likely, the cost of messaging in this case will far extélge cost of computation. Clearly,
we will need to agglomerate primitive tasks to increase tbekwlone by each and to reduce the
needed communication.

Obvious choices are to agglomerate rows or to agglomerétencs. Either can be done, but we
will choose rows, since that is more natural given the rowemarder of array storage in C.

If we group by rows, our row broadcast goes away. Each prog#issnly need to broadcast its
entry from columrk at iterationk to each other process. Quinn does this, and groups rows onto a
arbitrary number of processopswherep <= n.

We have removed half of the communication and made the catipatwithin each row more
significant. This seems good.

How does this affect our cost model. Let’'s assume that we dQuasn does, and have some
number of processos< n and we group rows on processors.

Each iteration involves? updates, each of which costs With p processors, the computation cost
is the cost of computing on the most heavily loaded procesgoch will be assignedn /p| rows,
each of which costsy. The communication cost is now a single broadcast.gp| values among

p processors, which will costog p| (A + %). So our full expression over iterations:

n([n/plnx + [log p] (A + L0

Even better, let's think about it in terms efprocessors. Furthermore, we’ll assume that the
processors are arranged logically agax ,/p matrix, and the matrix is broken intop blocks of

size\/i]5 X \/% Each processor updates its own submatrix at each iteration

What information does each processor need atitheteration? It needs information from the
processors that contain th& row andk!” column. The processor that contains &ferow or the
k" column will need to broadcast that row/column to every ofhreicessor that has part of that
row/column.

Pseudocode for this procedure:

for (k=0; k<n; k++) {
each process P[i][]j] that has a segnent of the kth row of a
broadcasts it to the P[*x][j] processes
each process P[i][j] that has a segnent of the kth colum of a
broadcasts it to the P[i][*] processes
each process waits to receive the needed segnents
each process P[i][j] computes its |local part of a

CSIS 400 Parallel Processing Fall 2008

In each iteration, thé* row andk** column processors do a one-to-all broadcast along the row or
column of\/;? prpcessors. Each such processor broadc%stsements, for a cost aﬂ)(\/iz3 log p)
for communication.

The computation at each iteration@i”;)

Our cost model becomes:

