
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: Parallel Algorithms

Algorithm Design for Distributed Memory
When programming for a message-passing/distributed-memory environment, we have several con-
siderations that will drive our approach:

• distribute the computational workload among the processes

• distribute the memory requirements among the processes

• minimize the interprocess communication

– minimize the number of messages

– minimize the volume of data transferred

– maximize message concurrency

– minimize the number of neighbors with which communication is needed

Recall that our motivations for parallel processing may be either computational speedup, compu-
tational scaling, or both.

When the motivation is on speedup, we want to focus on a balanced computational workload.
When the motivation is scaling, we want to balance and minimize the per-process memory usage.

We always want to reduce communication as much as we can, since that is pure overhead intro-
duced by our parallel implementation.

Foster’s Design Methodology

Ian Foster suggests a design approach for parallel algorithm design. His four steps:

1. Partition the problem by dividing it into pieces that we’ll callprimitive tasks.

2. Determine how the primitive tasks need to communicate with each other. These can be

• local communication where a primitive task will need information from some of its
neighbors to continue computation,

• global communication where many or all primitive tasks need to contribute.

3. Agglomerate the primitive tasks into groups that will be assigned together to a processor.

CSIS 400 Parallel Processing Fall 2008

• we can reduce communication by agglomerating tasks that would need to communicate
with each other

4. Map the agglomerated tasks to processors.

• If the number of agglomerated tasks is equal to the number of processors, this is easy.

• If there are more agglomerated tasks than processors, we will map them to balance the
load and minimize communication

Let’s think about this in terms of our Game of Life simulation.

Here, we can consider one update of one cell to be a primitive task. Each primitive task needs to
communicate with the task representing itself in the previous step and the tasks representing each
of its 8 neighbors from the previous step to perform its update.

One thing we probably realized before but which is clear fromthe communication pattern is that
we cannot do tasks in iteration 2 until at least some of the tasks from iteration 1 are completed.

So an obvious first agglomeration is to group all tasks that are responsible for a given cell over all
iterations.

Our implementation, however, continues to agglomerate. Wegroup all primitive tasks that repre-
sent a row of our simulation.

We take it a step further and agglomerate the rows to form a number of tasks equal to the number
of processes we’ll start.

So we have a model for what we implemented. Let’s analyze it.

Let χ represent the time needed to computecelli,j,t given values ofcelli−1,j−1,t−1, celli,j−1,t−1,
celli+1,j−1,t−1, celli−1,j,t−1, celli,j,t−1, celli+1,j,t−1, celli−1,j+1,t−1, celli,j+1,t−1, andcelli+1,j+1,t−1.

Using a single processor to compute then2 cells for one iteration requiresn2χ time. To compute
m iterations, we needmn2χ time.

Usingp processors with the decomposition we described previously, we can perform our groups
of rows concurrently. Thus, the time for one iteration isn2

p
χ. If n does not divide evenly byp, we

will have more rows assigned to some processors, so we use themaximum, denoted by⌈n2

p
⌉χ, to

represent our per-iteration computational cost.

However, we have introduced communication costs. Let’s letλ represent the cost to send one value
from one process to another. For each iteration, we need to send and receive either one or two rows
to our neighbors. So at a maximum, we will send2n values at a cost of2nλ.

This gives us a cost model for our parallel implementation:

m(⌈n2

p
⌉χ + 2nλ)

There is an additional cost for the message passing that we have not accurately accounted for. We
don’t send2n messages, each with a cost ofλ at each step – we send 2 messages of lengthn.

2

CSIS 400 Parallel Processing Fall 2008

There are two parts to the cost of sending a message:

• latency – the cost of sending any message

• bandwidth – the cost of sending a given amount of data in a message

Sending 100 messages of size 1 is much more expensive than sending 1 message of size 100,
mainly because we incur the latency cost once per message, while the bandwidth cost is the same.

If our communication system has a bandwidth capability ofβ, typically measured in units such as
MB/sec, we can express the cost of sending a message of sizen asλ + n

β
.

Applying this to our cost model for the Game of Life, we have the 2 messages of sizen at each
step to get:

m(⌈n2

p
⌉χ + 2(λ +

n

β
))

Sieve of Eratosthenes
Chapter 5 of Quinn describes a method for finding prime numberscalled theSieve of Eratosthenes.
This will be the first of a few problems we’ll use to refine our parallelization skills.

We first consider what would be the primitive tasks. The marking of the multiples of a particular
value is at the heart of the computation, and it is these markings that are the primitive tasks.

A data decomposition is most natural here, since our array ofcandidate primes can be distributed.
We will associate a single task with each of the candidate primes.

Of course, we know from our experiences so far that we will need to group these tasks appropri-
ately. There are two main options, each of which we’ve seen inthe OpenMP context: interleaved
decomposition, and block decomposition.

If we want to agglomeratep tasks from our array ofn numbers, there are quickly some problems
with the interleaved decomposition. So we use a block decomposition, assigning aboutn

p
entries

to each.

In many of our examples, we have used block decompositions but have further assumed that we
could dividen by p evenly. Section 5.4 in Quinn does not make this assumption.

So, our approach:

• distribute then-element “sieve” array, initialize to 0’s (unmarked)

• start withk=2

• while (k<=sqrt(n))

– mark all local multiples ofk

3

CSIS 400 Parallel Processing Fall 2008

– compute nextk (next unmarked)

• print the resulting primes

We make a further assumption that all values ofk will be found by our master process. This is
valid as long asn ≥ p2, which is a perfectly reasonable assumption (though our program should
check it). This means we always know that the master process can find the next value ofk and
broadcast it to the others.

Quinn has a detailed analysis of this algorithm that is wortha look.

Once we have a version that does the broadcast, can we eliminate that broadcast?

We can, by usingreplicated computation. As long as we assume thatn >> p2, there seems to
be little harm in having a second little array replicated on each process that computes the primes
between 2 and

√
n.

This eliminates the cost of the broadcast, but is it worth doing the replicated computation? Well,
we already had to wait on all other processes for the master tocompute the next prime. So there’s
really no time lost there – the others were just waiting in thebroadcast operation anyway. The cost
is in additional memory usage, which is small for large enough values ofn.

Quinn suggests a further enhancement that tries to achieve better cache utilization. By reordering
our loops to mark multiples of all primes within a given subrange, we can keep data in cache
longer, which is often the most significant factor affectingperformance of our programs.

Finally, Quinn exercise 5.9 suggests a functional decomposition approach and 5.10 asks you to
name some disadvantages.

Floyd’s Algorithm
Many computationally and memory intensive problems involve graph structures and computations
on those graph structures. We will consider one for now.

First, recall the definition of a graph:

A graph G is a collection ofnodes or vertices, in a setV , joined byedges in a setE. Vertices
typically have labels. Edges can also have labels (often weights).

The graph structure represents relationships (the edges) among the objects stored (the vertices).

4

CSIS 400 Parallel Processing Fall 2008

H

A

B C
D

E

F
G

4
7

1

3

5

8
11

2

Graphs can bedirected or undirected. In a directed graph, each edge represents a one-way connec-
tion. For undirected graphs, edges connect two vertices mutually.

Chapter 6 of Quinn examinesFloyd’s Algorithm, which is used to solve the all-pairs shortest paths
problem for a directed graph.

See Figure 6.1 in Quinn for an example of a graph and its representation as anadjacency matrix,
then a solution to the all-pairs shortest path problem.

The procedure works by numbering the vertices of the graphv1, v2, ..., vn. We start by setting the
“best known” distance betweenvi andvj as the weight of the edge betweenvi andvj, if it exists,
∞ otherwise. Then we consider paths fromvi to vj that pass throughv1. The shortest path is now
either the weight of the edge fromvi to vj or a path fromvi to v1 to vj. Then, we consider paths
that includev2, thenv3, and so on. At stepk, we need to check if the path fromvi to vk followed
by the path fromvk to vj is shorter than the best (so far) known path fromvi to vj.

This is implemented with a triple-nested for-loop, so the serial version ofO(n3). Below,A is the
adjacency matrix of the graph, andD is the matrix of shortest paths:

// intialize matrix a with edge weights where they exist,
// with MAXINT where they do not
for (k=0; k<n; k++)

for (i=0; i<n; i++)
for (j=0; j<n; j++)
a[i][j] = min(a[i][j], a[i][k]+a[k][j]);

// entries of a now contain length of shortest paths

What about parallelization?

Our primitive tasks will be then2 entries of the matrix, and each primitive task does thek iterations
for its entry.

Let’s start by thinking about how an algorithm would work if we hadn2 processors, one for each
of these primitive tasks.

5

CSIS 400 Parallel Processing Fall 2008

At first, let’s not worry about data distribution. Suppose wehave a shared memory environment.
Can we do the primitive tasks in any order?

It might not seem so at first, since at iterationk, we need to make sure we don’t change the values
we’re using during this iteration before we make use of them.

The reason for this is that we are using only values in rowk and columnk at during iterationk.
Values in rowk will not change during iterationk since the assignment for entries i rowk is:

a[k][j] = min(a[k][j], a[k][k]+a[k][j])

But all of our values are positive, so there is no way the above statement can change entry
a[k][j].

A similar argument shows that values in columnk will not change during iterationk.

Thus, we can perform the assignments at a given iteration in any order and/or concurrently.

With shared memory and threads, this is simple - just parallelize our innerfor loops and we’re
set.

With message passing and distributed memory, matters become more complex.

Eacha[i][j] will be owned by a process. What other information does that process need to
perform the update of its own data element at iterationk?

It needs the value in rowk from its column and from columnk in its row.

This boils down to this procedure:

for (k=0; k<n; k++) {
each process P[k][j] broadcasts its value to the P[*][j] processes
each process P[i][k] broadcasts its value to the P[i][*] processes
each process waits to receive the needed values
each process P[i][j] computes its new a[i][j]

}

So every process participates in 2 broadcasts of a single value ton processes at each iteration, plus
its small computation.

Even assuming all communication can occur concurrently, this is a lot of communication.

Our cost using the cost model from Quinn:

Let χ be the cost of an entry update. Our computation time in each iteration isχ, since alln2

operations are happening concurrently. The communicationcost is2 log nλ, since we have to wait
for 2 broadcasts amongn processes of a single value.

So overn iterations, our cost is:

6

CSIS 400 Parallel Processing Fall 2008

n(χ + 2 log nλ)

Most likely, the cost of messaging in this case will far exceed the cost of computation. Clearly,
we will need to agglomerate primitive tasks to increase the work done by each and to reduce the
needed communication.

Obvious choices are to agglomerate rows or to agglomerate columns. Either can be done, but we
will choose rows, since that is more natural given the row-major order of array storage in C.

If we group by rows, our row broadcast goes away. Each processwill only need to broadcast its
entry from columnk at iterationk to each other process. Quinn does this, and groups rows onto an
arbitrary number of processorsp, wherep <= n.

We have removed half of the communication and made the computation within each row more
significant. This seems good.

How does this affect our cost model. Let’s assume that we do asQuinn does, and have some
number of processorsp < n and we group rows on processors.

Each iteration involvesn2 updates, each of which costsχ. With p processors, the computation cost
is the cost of computing on the most heavily loaded processor, which will be assigned⌈n/p⌉ rows,
each of which costsnχ. The communication cost is now a single broadcast of⌈n/p⌉ values among
p processors, which will cost⌈log p⌉(λ + ⌈n/p⌉

β
). So our full expression overn iterations:

n(⌈n/p⌉nχ + ⌈log p⌉(λ +
⌈n/p⌉

β
))

Even better, let’s think about it in terms ofp processors. Furthermore, we’ll assume that the
processors are arranged logically as a

√
p×√

p matrix, and the matrixa is broken intop blocks of
size n√

p
× n√

p
. Each processor updates its own submatrix at each iteration.

What information does each processor need at thekth iteration? It needs information from the
processors that contain thekth row andkth column. The processor that contains thekth row or the
kth column will need to broadcast that row/column to every otherprocessor that has part of that
row/column.

Pseudocode for this procedure:

for (k=0; k<n; k++) {
each process P[i][j] that has a segment of the kth row of a

broadcasts it to the P[*][j] processes
each process P[i][j] that has a segment of the kth column of a

broadcasts it to the P[i][*] processes
each process waits to receive the needed segments
each process P[i][j] computes its local part of a

}

7

CSIS 400 Parallel Processing Fall 2008

In each iteration, thekth row andkth column processors do a one-to-all broadcast along the row or
column of

√
p processors. Each such processor broadcastsn√

p
elements, for a cost ofO(n√

p
log p)

for communication.

The computation at each iteration isO(n2

p
)

Our cost model becomes:

n(
n2

p
χ + ⌈log p⌉(λ +

n/
√

p

β
))

8

