
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: Message Passing

What about distributed memory?
So far we have seen three ways to create a parallel program:

1. Let the compiler do whatever it can completely automatically

2. Create threads explicitly using pthreads

3. Specify parallel sections using OpenMP

These all suffer from one significant limitation – the cooperating threads must be able to commu-
nicate through shared variables.

How can we design and run parallel programs to work when thereis no shared memory available?

Message Passing
We will now consider the message passing paradigm.

• Characteristics:

– Locality - each processor accessesonly its local memory

– Explicit parallelism - messages are sent and received explicitly - programmer controls
all parallelism. The compiler doesn’t do it.

– Cooperation- every send must have a matching receive in order for the communication
to take place.Beware of deadlock! One sided communication is possible, but doesn’t
really fit the pure message-passing model.

• Advantages:

– Hardware - many current clusters of workstations and supercomputersfit well into
the message passing model, and shared memory systems can runmessage passing pro-
grams as well.

– Functionality - full access to parallelism. We don’t have to rely on a compiler. The
programmer can decide when parallelism makes sense. But thisis also a disadvantage
- the full burden is on the programmer! Advice: If the compiler can do it for you, let it!

CSIS 400 Parallel Processing Fall 2008

– Performance- data locality is important - especially in a multi-level memory hierarchy
which includes off-processor data. There is a chance for superlinear speedup with
added cache as we talked about earlier in the course. Communication is often MUCH
more expensive than computation.

Cooperating Processes
Unix programs can usefork() to create new processes.

The Unix system callfork() duplicates a process. The child is a copy of the parent - in execution
at the same point, the statement after the return fromfork().

The return value indicates if you are child or parent.

0 is child,> 0 means parent, -1 means failure (limit reached, permission denied)

Example C program:

pid=fork();
if (pid) {

parent stuff;
}
else {

child stuff;
}

A more complete program that usesfork() along with three other system calls (wait(),
getpid(), andgetppid()) is here:

See:/cluster/examples/forking

Processes created usingfork() do not share context, and must allocate shared memory explicitly,
or rely on a form of message passing to communicate.

We will not consider the Unixfork() method of multiprocessing much, but here’s an example
to show you that in fact, even global variables are not sharedby processes that are created with
fork():

See:/cluster/examples/what shared

Remember that the advantage of using processes such as these instead of threads is that the pro-
cesses could potentially be running on different systems. But if they are going to cooperate, they
will need to communicate:

• Two processes on the same system can communicate through a named or an unnamedpipe.

• Two processes on different systems must communicate acrossa network - most commonly
this is done usingsockets.

2

CSIS 400 Parallel Processing Fall 2008

Sockets and pipes provide only a very rudimentary interprocess communication. Each “message”
sent through a pipe or across a socket has a unique sender and unique receiver and is really nothing
more than a stream of bytes. The sender and receiver must add any structure to these communca-
tions.

Here’s a very simplistic example of two processes that can communicate over raw sockets. It is
included mainly to show you that you don’t want to be doing this if you can help it:

See:/cluster/examples/socket

For many applications, this primitive interface is unreasonable. We want something at a higher
level. Message passing libraries have evolved to meet this need.

Message Passing Libraries

• Message passing is supported through a set of library routines. This allows programmers to
avoid dealing with the hardware directly. Programmers wantto concentrate on the problem
they’re trying to solve, not worrying about writing to special memory buffers or making
TCP/IP calls or even creating sockets.

• Examples: P4, PVM, MPL, MPI, MPI-2, etc. MPI and PVM are the most common.

• Core Functionality:

– Process Management - start and stop processes, query number of procs or PID.

– Point-to-Point Communications - send/receive between processes

– Collective Communication - broadcast, scatter, gather, synchronization

• Terminology:

– Buffering - copy into a buffer somewhere (in library, hardware)

– Blocking communication - wait for some “event” to complete a communication routine

– Nonblocking communication - “post” a message and return immediately

– Synchronous communication - special case of blocking - send does not return until
corresponding receive completes

– Asynchronous communication - pretty much nonblocking

Point-to-Point Communication

All message passing is based on the simplesend andreceive operations

P0: send(addr,len,dest,tag)

P1: receive(addr,max_len,src,tag,rec_len)

3

CSIS 400 Parallel Processing Fall 2008

These are basic components in any message-passing implementation. There may be others intro-
duced by a specific library.

• addr is the address of the send/receive buffer

• len is the length of the sent message

• max len is the size of the receive buffer (to avoid overflow)

• rec len is the length of the message actually received

• dest identifies destination of a message being sent

• src identifies desired sender of a message being received (or where it actually came from if
“any source” is specified)

• tag a user-defined identifier restricting receipt

Point-to-Point Communication - Blocking

Blocking communication has simple semantics:

• send completes when send buffers are ready for reuse, after message received or at least
copied into system buffers

• receive completes when the receive buffer’s value is ready to use

But beware of deadlockwhen using blocking routines!!

Proc 0 Proc 1

bsend(to 1) bsend(to 0)
brecv(from 1) brecv(from 0)

If both processors’ send buffers cannot be copied into system buffers, or if the calls are strictly syn-
chronous, the calls will block until the corresponding receive call is made... Neither can proceed...
deadlock...

Possible solutions - reorder to guarantee matching send/receive pairs, or usenonblocking routines...

Point-to-Point Communication - Nonblocking

• send or receive calls return immediately - but how do we know when it’s done? When
can we use the value?

• can overlap computation and communication

4

CSIS 400 Parallel Processing Fall 2008

• must call await routine to ensure communication has completed before destroying send
buffer or using receive buffer

Example:

Proc 0 Proc 1

nbsend(to 1) nbsend(to 0)
nbrecv(from 1) nbrecv(from 0)
compute...... compute......
waitall waitall
use result use result

During the “compute......” phase, it’s possible that the communication can be completed “in the
background” while the computation proceeds, so when the “waitall” lines are reached, the program
can just continue.

Deadlock is less likely but we still must be careful – the burden of avoiding deadlock is on the
programmer in a message passing model of parallel computation.

Collective Communication

Some common operations don’t fit well into a point-to-point communication scheme. Here, we
may usecollective communication routines.

• collective communication occurs among a group of processors

• the group can be all or a subset of the processors in a computation

• collective routines are blocking

• types of collective operations

– synchronization/barrier - wait until all processors have reached a given point

– data movement - broadcast (i.e. error condition, distribute read-in values), scatter/gather
(exchange boundary on a finite element problem, for example), all-to-all (extreme case
of scatter/gather)

– reductions - collect data from all participating processors and operate on it (i.e. add,
multiply, min, max)

These kinds of operations can be achieved through a series ofpoint-to-point communication steps,
but operators are often provided.

Using collective communication operators provided is generally better than trying to do it yourself.
In addition to providing convenience, the message passing library can often perform the operations
more efficiently by taking advantage of low-level functionality.

5

