
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: C and Unix Overview

This course is about parallel processing, but since most of our programming is in C on a Unix
environment, we’ll spend some time getting you up to speed onC and Unix before we start any
real parallel programming.

A Very Simple C Program
In our brief lab time, you have already seen how to compile andrun a very simple C program
(hello.c) in a Unix environment.

Things to note from this simple example:

• We run a program namedgcc, which is a free C compiler.

• gcc, in its simplest form, can be used to compile a C program in a single file:

gcc hello.c

In this case, we’re askinggcc to compile a C program found in the filehello.c.

Since we didn’t specify what to call the executable program produced, gcc produces a file
a.out. The name is “a.out” for historical reasons.

• When we want to run a program located in our current directory in a Unix shell, we type its
name.

– For example, when we wanted to rungcc, we typed its name, and the Unix shell found
a program on the system in a file namedgcc.

– How does it know where to find it? The shell searches for programs in a sequence of
directories known as thesearch path. Try: env.

– So if we want to runa.out, we should be able to type its name. But our current
directory, always referred to in a Unix shell by “.”, is not inthe search path. We need
to specify the “.” as part of the command to run:

./a.out

• Of course, we probably don’t want to compile up a bunch of programs all nameda.out, so
we usually askgcc to put its output in a file named as one of the parameters togcc:

gcc -o hello hello.c



CSIS 400 Parallel Processing Fall 2008

Here, the executable file produced is calledhello.

• And in the program itself, let’s make sure we understand everything:

– At the top of the file, we have a big comment describing what theprogram does, who
wrote it, and when. Your programs should have something similar in each C file.

– We are going to use a C library function calledprintf to print a message to the
screen. Before we can use this function, we need to tell the C compiler about it. For
C library functions, the needed information is provided inheader files, which usually
end in.h. In this case, we need to includestdio.h. Why? Seeman 3 printf.
(More on the Unix manual later.)

– A C program starts its execution by calling the functionmain. Any command-line
parameters are provided tomain through the first two arguments to main, traditionally
declared asargc, the number of command-line parameters (including the nameof
the program itself), andargv, an array of pointers to character strings, each of which
represents one of the command-line parameters. In this case, we don’t use them, but
there they are.

– Our call toprintf results in the string passed as a parameter to be printed to the
screen. The\n results in a new line.

– Ourmain function returns anint value. A value of 0 returned frommain generally
indicates a successful execution, while a non-zero return indicates an error condition.
So we return a 0.

• Notes for Java programmers:

– Good news: much of the Java syntax was borrowed from C, so a lot of things will look
familiar.

– There are no classes and methods, justfunctions, which can be called at any time.

A Bit More Complex Example
We next consider an overly complicated C program that computes the greatest common denomi-
nator of two integer values.

Lots of things to notice here:

• We have four files:

– gcd.c: the implementation of thegcd function

– gcd.h: a header file with a prototype for thegcd function

– gcdmain.c: a main program that determines the input numbers, computesthe GCD,
and prints the answer, and

2



CSIS 400 Parallel Processing Fall 2008

– Makefile: a “make file” that gives a set of rules for compiling these files into the
executable programgcdmain.

When executing, functions from bothgcdmain.c (main) andgcd.c (gcd) will be used.
Both of these are included in our executable filegcdmain.

• Start withgcd.c:

– This is a very simple recursive function to compute the greatest common denominator
using the Euclidean Algorithm.

– There is nomain function here, so if we try to compile this by itself as we did with
hello.c, we will get an error.

– Instead, we havegcc use “compile only” mode to generate anobject filegcd.o from
gcd.c:

gcc -c gcd.c

gcd.o is a compiled version ofgcd.c, but it cannot be executed.

C (and many other languages) require a two steps for source code to be converted into
an executable. The first step compiles source code into object code, the second takes
a collection of object code files andlinks together the references in those files into an
executable file. (There’s much more to discuss here, but thisshould suffice for now.)

• Next up,gcd.h:

– Much likestdio.h tells the compiler what it needs to know aboutprintf (among
other things), we havegcd.h to tell other C functions what they need to know about
the functiongcd. Namely, that it’s a function that takes twoints as parameters and
returns anint.

– Any C file that contains a function that callsgcd should#include "gcd.h".

• The driver program,gcdmain.c:

– We include several header files to tell the compiler what it needs to know about C
library functions (and ourgcd function) that are called by functions defined here.

– This is where ourmain function is defined.

– We can define local variables to functions, just like local variables in a Java method.

– In this case, we look at the arguments tomain that provide the command-line param-
eters of our program:argc andargv.

– If we have fewer than three command-line parameters, including the program name
itself (which is always there), we prompt the user for two numbers (withprintf),
then read in two numbers from the terminal withscanf.

3



CSIS 400 Parallel Processing Fall 2008

– scanf is a very strange thing. It will make a bit more sense when you are more
familiar with printf, but for now we can summarize what we see there as “read in
two integer values (represented by the%d’s in theformat string), and put them into the
place pointed at by the address ofa and the address ofb, then return the number of
values that matched the input with the correct format.” Right.

– Thescanf call forces us to think a bit aboutpointers, which are the key to understand-
ing so much of how C works.scanf’s parameters after the format string are always a
list of pointers to a place in memory where there is room to putthe values being read
in. In this case, we want the twoint values to end up in the local variablesa andb,
so we have to take the address of those variables with the& operator. Don’t worry, it
will make better sense when you see more examples.

– Next, we check to make sure that the input toscanf did, in fact, represent twoint
values. If not, we print an error message and exit. Otherwise, we continue.

– Some things to notice in the error condition:

∗ We usefprintf instead ofprintf. This is because we want to give this out-
put special significance. Rather than sending it to thestandard output, which is
whatprintf would do, we send it tostandard error, by usingfprintf and
specifyingstderr as the first parameter.

∗ Other than that, it works just likeprintf. We give it a format string. In this case,
it includes one specifier, a%s, which means to expect an additional parameter
which is a character string. Here, the string isargv[0], the first command-line
parameter, which is always the name of the program. This labels the error message
with the program name.

∗ Once we have detected the error, we don’t want to continue, sowe call theexit
function with an error code of 1 to terminate execution. We could also use the call
return 1;.

– In the case where at least two command-line parameters were provided, we try to con-
vert them (argv[1] andargv[2]) to integer values. This is done with the overly
complicatedstrtol function, which we use then check error conditions.

∗ The man page forstrtol tells us we need to include two additional header files,
stdlib.h andlimits.h.

∗ It also tells us about the parameters tostrtol, which are the string which we
would like to convert to a number, a pointer into the string atthe point beyond
which we matched a number (which we don’t care about, so we pass in NULL),
and the base to use for the conversion. We also see that the number is the return
value.

∗ Error checking forstrtol is messy – we need to check the variableerrno,
defined inerrno.h, to see if an error condition was encountered. If so,errno
will be a non-zero value and we print an error message and exit.

∗ Note that the error check here has two%s’s, so we have two additional parameters
to fprintf.

4



CSIS 400 Parallel Processing Fall 2008

– Finally, we’re ready to check that the numbers entered are non-negative, and if so, we
print out the answer (obtained by thegcd function call inside of aprintf parameter).

– This file includes amain function, so we might think we could compile it to an exe-
cutable as we did withhello.c, but if we try, we’ll find that it doesn’t know how to
find thegcd function. Again, we’ll have to compile but not link:

gcc -c gcdmain.c

This produces the object filegcdmain.o. We need tolink together our two object
files, which, together, have the function definitions we need:

gcc -o gcdmain gcdmain.o gcd.o

This gives isgcdmain, which we can run.

• TheMakefile, which you will learn about as part of Lab 1, contains rules togenerate a
sequence of calls togcc that will correctly compile and link thegcdmain executable.

The bad news: that was a lot of trouble just to write a simple program. The good news: you will
have a lot of examples to go on and you can ask a lot of questions.

Running Example: Matrix Multiplication
We’ll get started by using a matrix-matrix multiply as a running example. Most of the class exam-
ples will be placed in subdirectories of/cluster/examples on the Siena CS cluster.

We start with a serial implementation of a matrix-matrix multiply and use it to learn/review a bit
about C and Unix:

See:/cluster/examples/matmult

• This is another example of separate compilation – The function intimer.c will be useful
throughout the semester. We tellmatmult.c about it with the line

#include "timer.h"

This provides aprototypeof the function intimer.c. In many cases, this file would also
define any data structures or constants/macros used by the functions it defines.
This is a good model to use as you move forward and develop morecomplicated C programs.
Group functions as you would group methods in a Java class or member functions in a C++
class.

• Along those same lines, the include files in angle brackets

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

5



CSIS 400 Parallel Processing Fall 2008

specify system-wide header files. By convention (though mostcompilers don’t really make
a distinction) system-wide header files are in angle brackets, while your own header files are
in double quotes.

• Each file can then be compiled separately to create anobject file(.o file) from the C source.
These object files are all listed at the linking step.
What happens for functiondiffgettime() at compile time? Link time?

• The program uses two system calls:printf() andgettimeofday(). To see how these
work, we can look at theirman pages:

man printf

to see everything we wanted to know about a particular systemcall. But if you do this, you
might get a man page for a command-line utility calledprintf instead of the system call
printf(). Not what we were looking for. The Unix manual is divided up into sections.
The most important of these sections, for our purposes, are Section 1: User Commands, and
Section 3: Library Functions. If we don’t ask for a section, we get section 1. Since section
1 contains an entry forprintf, that’s what it produced. To force it to give you the system
call manual page, you can use (under Solaris)

man -s 3C printf

This actually tells it to look in section 3C, which contains system calls in the C library. How
did I know to look in section 3C? Mainly because theprintf man page in section 1 told
me so, at the bottom under the “See Also” section.
In FreeBSD, the syntax is a bit simpler:

man 3 printf

Again, I knew to request section 3 of the manual by looking at the bottom of theprintf(1)
man page.
Fortunately, you only need to concern yourself with what section of the manual to use when
you look something up that it in more than one section. For example,

man gettimeofday

brings up the man page we want, for thegettimeofday() system call in section 3C when
requested in Solaris, section 2 (the system calls section) under FreeBSD.
If you see a reference to something likectime(3C) in the “See Also” section of a man
page, such as that ingettimeofday()’s man page, that means thectime() man page
is in section 3C. I will use this notation frequently throughout the semester.
You will find the Unix manual very helpful as we move forward.

• So what doesgettimeofday(3C) do? See the man page and look at the usage in the
example program.

• what’s going on with memory management?
• what would happen if we declaredstruct timeval * variables instead ofstruct
timeval?

6



CSIS 400 Parallel Processing Fall 2008

gettimeofday(3C) returnswall clock times. This is the amount of elapsed real time.
So if our process is taking turns on the CPU with other processes (see the Operating Systems
course) and it is not always running, it continues to accumulate wall clock time, but notCPU
usage time. There are also system calls to examine CPU usage time which wemay consider
later.

• TheMakefile is using the Sun compiler (cc) with the option-xO3 for optimization. If
you want to run this with a different compiler or optimization flags, you can change theCC=
line in theMakefile.

If we compile and run this program, it reports initialization and matrix multiplication times. Ini-
tialization is just filling in matricesa andb. Then we compute the value of each element ofc
using the dot product of the corresponding row ofa and column ofb.

Remember your data structures and algorithms: what is the complexity of matrix-matrix multiply?

How long does it take you to run this program onbullpen?

7


