Computer Science 400

Parallel Processing
Siena College

SIENAcollege Fall 2008

Topic Notes: C and Unix Overview

This course is about parallel processing, but since mostupfpoogramming is in C on a Unix
environment, we’ll spend some time getting you up to spee@ @md Unix before we start any
real parallel programming.

A Very Simple C Program

In our brief lab time, you have already seen how to compile mda very simple C program
(hel I 0. ¢) in a Unix environment.

Things to note from this simple example:

e We run a program namegtc, which is a free C compiler.

e gcc, in its simplest form, can be used to compile a C program imglsifile:
gcc hello.c

In this case, we’re askingcc to compile a C program found in the fifeel | 0. c.
Since we didn't specify what to call the executable prograodpced, gcc produces a file
a. out . The name is “a.out” for historical reasons.

e When we want to run a program located in our current directory Unix shell, we type its
name.

— For example, when we wanted to rgnc, we typed its name, and the Unix shell found
a program on the system in a file nanggzk.

— How does it know where to find it? The shell searches for progran a sequence of
directories known as theearch pathTry: env.

— So if we want to ruma. out , we should be able to type its name. But our current
directory, always referred to in a Unix shell by “.”, is nottime search path. We need

to specify the “.” as part of the command to run:

./ a.out

e Of course, we probably don’t want to compile up a bunch of prots all namea. out , so
we usually aslgcc to put its output in a file named as one of the parametegs ta

gcc -0 hello hello.c

CSIS 400 Parallel Processing Fall 2008

Here, the executable file produced is calted | 0.

e And in the program itself, let's make sure we understandythirg:

— At the top of the file, we have a big comment describing whatptfoggram does, who
wrote it, and when. Your programs should have somethingainm each C file.

— We are going to use a C library function callpdi nt f to print a message to the
screen. Before we can use this function, we need to tell thenipiter about it. For
C library functions, the needed information is providedeader fileswhich usually
end in. h. In this case, we need to incluge di 0. h. Why? Seevan 3 printf.
(More on the Unix manual later.)

— A C program starts its execution by calling the functiomi n. Any command-line
parameters are providedn@i n through the first two arguments to main, traditionally
declared asr gc, the number of command-line parameters (including the naime
the program itself), andr gv, an array of pointers to character strings, each of which
represents one of the command-line parameters. In this sesdon’t use them, but
there they are.

— Our call topri ntf results in the string passed as a parameter to be printeceto th
screen. Thé n results in a new line.

— Ourmai n function returns am nt value. A value of O returned frommi n generally
indicates a successful execution, while a non-zero retditates an error condition.
So we return a 0.

¢ Notes for Java programmers:

— Good news: much of the Java syntax was borrowed from C, so &tleings will look
familiar.

— There are no classes and methods, fuisttions which can be called at any time.

A Bit More Complex Example

We next consider an overly complicated C program that coesptlte greatest common denomi-
nator of two integer values.

Lots of things to notice here:

o \We have four files:

— gcd. c: the implementation of thgcd function
— gcd. h: a header file with a prototype for tlgged function

— gcdnai n. ¢: a main program that determines the input numbers, comphgeSCD,
and prints the answer, and

CSIS 400 Parallel Processing Fall 2008

— Makefi |l e: a “make file” that gives a set of rules for compiling thesesfileto the
executable programcdmai n.

When executing, functions from bogftdrmai n. ¢ (mai n) andgcd. ¢ (gcd) will be used.
Both of these are included in our executable gitdmai n.

e Start withgcd. c:

— This is a very simple recursive function to compute the grgtatommon denominator
using the Euclidean Algorithm.

— There is nomai n function here, so if we try to compile this by itself as we didhw
hel | 0. c, we will get an error.

— Instead, we havgcc use “compile only” mode to generate ahject filegcd. o from
gcd. c:
gcc -c ged.c

gcd. o is a compiled version agjcd. ¢, but it cannot be executed.

C (and many other languages) require a two steps for soud®etode converted into
an executable. The first step compiles source code into tobjpele, the second takes
a collection of object code files aritiks together the references in those files into an
executable file. (There’s much more to discuss here, bushusld suffice for now.)

e Nextup,gcd. h:

— Much like st di 0. h tells the compiler what it needs to know abquti nt f (among
other things), we havgcd. h to tell other C functions what they need to know about
the functiongcd. Namely, that it's a function that takes twat s as parameters and
returns an nt .

— Any C file that contains a function that caie d should#i ncl ude "gcd. h".
e The driver programgcdmai n. c:

— We include several header files to tell the compiler what é&dseto know about C
library functions (and ougcd function) that are called by functions defined here.

— This is where oumai n function is defined.
— We can define local variables to functions, just like localalales in a Java method.

— In this case, we look at the argumentsmi n that provide the command-line param-
eters of our programar gc andar gv.

— If we have fewer than three command-line parameters, inojuthe program name
itself (which is always there), we prompt the user for two tens (withpri ntf),
then read in two numbers from the terminal wstbanf .

CSIS 400 Parallel Processing Fall 2008

— scanf is a very strange thing. It will make a bit more sense when y@uraore
familiar with pri nt f, but for now we can summarize what we see there as “read in
two integer values (represented by #@s in theformat string, and put them into the
place pointed at by the addressabfind the address df, then return the number of
values that matched the input with the correct format.” Right

— Thescanf call forces us to think a bit abopbinters which are the key to understand-
ing so much of how C worksscanf 's parameters after the format string are always a
list of pointers to a place in memory where there is room totpatvalues being read
in. In this case, we want the twant values to end up in the local variablasandb,
so we have to take the address of those variables witi thygerator. Don’t worry, it
will make better sense when you see more examples.

— Next, we check to make sure that the inpustwanf did, in fact, represent twont
values. If not, we print an error message and exit. Otherwisecontinue.

— Some things to notice in the error condition:

x We usef printf instead ofpri ntf. This is because we want to give this out-
put special significance. Rather than sending it todtamdard outpytwhich is
whatpri ntf would do, we send it tgtandard error by usingf pri ntf and
specifyingst der r as the first parameter.

x Other than that, it works just liker i nt f . We give it a format string. In this case,
it includes one specifier, s, which means to expect an additional parameter
which is a character string. Here, the stringrsgv[0] , the first command-line
parameter, which is always the name of the program. Thidddbe error message
with the program name.

+ Once we have detected the error, we don’t want to continug/escall theexi t
function with an error code of 1 to terminate execution. Weld@lso use the call
return 1;.

— In the case where at least two command-line parameters wavglpd, we try to con-
vert them ar gv[1] andar gv[2]) to integer values. This is done with the overly
complicatedst rt ol function, which we use then check error conditions.

x The man page fost r t ol tells us we need to include two additional header files,
stdlib.handlimts.h.

x It also tells us about the parametersstor t ol , which are the string which we
would like to convert to a number, a pointer into the stringhegt point beyond
which we matched a number (which we don't care about, so we ipa€ULL),
and the base to use for the conversion. We also see that theenusrthe return
value.

x Error checking forstrt ol is messy — we need to check the variabler no,
defined iner r no. h, to see if an error condition was encountered. Ifeso; no
will be a non-zero value and we print an error message and exit

x Note that the error check here has t#%®'s, so we have two additional parameters
tofprintf.

CSIS 400 Parallel Processing Fall 2008

— Finally, we're ready to check that the numbers entered anenagative, and if so, we
print out the answer (obtained by thed function call inside of gr i nt f parameter).

— This file includes arai n function, so we might think we could compile it to an exe-
cutable as we did withel | 0. c, but if we try, we'll find that it doesn’t know how to
find thegcd function. Again, we’ll have to compile but not link:

gcc -c gcdmain. c

This produces the object filgcdmai n. 0. We need tdink together our two object
files, which, together, have the function definitions we need

gcc -0 gcdmain gcdnmain. o gcd. o
This gives isgcdmai n, which we can run.

e TheMakefi | e, which you will learn about as part of Lab 1, contains ruleg¢nerate a
sequence of calls tgcc that will correctly compile and link thgcdnai n executable.

The bad news: that was a lot of trouble just to write a simptg@m. The good news: you will
have a lot of examples to go on and you can ask a lot of questions

Running Example: Matrix Multiplication

We’'ll get started by using a matrix-matrix multiply as a rimmexample. Most of the class exam-
ples will be placed in subdirectories bEl ust er / exanpl es on the Siena CS cluster.

We start with a serial implementation of a matrix-matrix tiply and use it to learn/review a bit
about C and Unix:

See:/ cl ust er/ exanpl es/ mat nul t

e This is another example of separate compilation — The fanatit i mer . ¢ will be useful
throughout the semester. We tetit mul t . ¢ about it with the line

#i nclude "tinmer. h"

This provides grototypeof the function int i mer . c. In many cases, this file would also
define any data structures or constants/macros used byrtbgdios it defines.
This is a good model to use as you move forward and develop coonplicated C programs.
Group functions as you would group methods in a Java classorlrar functions in a C++
class.

¢ Along those same lines, the include files in angle brackets

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <sys/tine. h>

CSIS 400 Parallel Processing Fall 2008

specify system-wide header files. By convention (though roostpilers don'’t really make
a distinction) system-wide header files are in angle bracketile your own header files are
in double quotes.

e Each file can then be compiled separately to creatabgact file(. o file) from the C source.
These object files are all listed at the linking step.
What happens for functiodi f f get ti me() at compile time? Link time?

e The program uses two system cals:i nt f () andget ti meof day() . To see how these
work, we can look at theiman pages

man printf

to see everything we wanted to know about a particular sys@mBut if you do this, you
might get a man page for a command-line utility calpgd nt f instead of the system call
printf (). Notwhat we were looking for. The Unix manual is divided uoisections.
The most important of these sections, for our purposes,esedd 1: User Commands, and
Section 3: Library Functions. If we don't ask for a sectiorg get section 1. Since section
1 contains an entry fgor i nt f, that’s what it produced. To force it to give you the system
call manual page, you can use (under Solaris)

man -s 3C printf

This actually tells it to look in section 3C, which contains®m calls in the C library. How
did I know to look in section 3C? Mainly because thei nt f man page in section 1 told
me so, at the bottom under the “See Also” section.

In FreeBSD, the syntax is a bit simpler:

man 3 printf

Again, | knew to request section 3 of the manual by lookingpattottom of thepr i nt f (1)
man page.

Fortunately, you only need to concern yourself with whatisamf the manual to use when
you look something up that it in more than one section. Fompta,

man getti neof day

brings up the man page we want, for tihet t i meof day() system call in section 3C when
requested in Solaris, section 2 (the system calls sectimhgrFreeBSD.
If you see a reference to something likei me(3C) in the “See Also” section of a man
page, such as that get t i neof day() ’s man page, that means thei me() man page
is in section 3C. | will use this notation frequently throughthe semester.
You will find the Unix manual very helpful as we move forward.

e So what doeglet t i neof day(3C) do? See the man page and look at the usage in the
example program.

e what’s going on with memory management?
e whatwould happen ifwe declared r uct ti neval * variablesinstead &t r uct
timeval ?

CSIS 400 Parallel Processing Fall 2008

getti nmeof day(3C) returnswall clocktimes. This is the amount of elapsed real time.
So if our process is taking turns on the CPU with other proce@s®e the Operating Systems
course) and it is not always running, it continues to accateulall clock time, but naEPU
usage timeThere are also system calls to examine CPU usage time whichayeonsider
later.

e TheMakefi | e is using the Sun compilec€) with the option- x(Q8 for optimization. If
you want to run this with a different compiler or optimizatifiags, you can change tie€=
line in theMakefil e.

If we compile and run this program, it reports initializatiand matrix multiplication times. Ini-
tialization is just filling in matricesa andb. Then we compute the value of each element of
using the dot product of the corresponding rovaaind column ob.

Remember your data structures and algorithms: what is thelesaty of matrix-matrix multiply?

How long does it take you to run this program loulperf?

