
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2019

Problem Set 3
Due: 4:00 PM, Friday, March 8, 2019 (code)

and 4:00 PM, Monday, March 11, 2019 (writeup)

You may work alone in a group of 2 or 3 on this assignment.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 4:00 PM, Monday, March 3, 2019. This
applies to those who choose to work alone as well!

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named ps3-yourgitname, for this problem set. Only one member of the group should follow
the link to set up the repository on GitHub, then others will be granted write access.

Submitting
Your submission requires that all required code deliverables and a PDF file of your writeup are
committed and pushed to the master for your repository’s origin on GitHub. If you see everything
you intend to submit when you visit your repository’s page on GitHub, you’re set.

Empirical Analysis of Sorting Algorithms
Your task, worth a total of 50 points, is to conduct an empirical study of sorting algorithms. We
have studied three sorting algorithms so far: bubble sort, selection sort, and insertion sort. We will
soon see others.

A sample empirical study, both code and writeup, is available in a GitHub repository (https:
//github.com/SienaCSISAlgorithms/SampleEmpiricalStudy) that you are wel-
come to clone or fork so you can use it as a model for your own study and writeup. Suggestions
for improvements to this sample study are welcome in the form of Issues and Pull Requests to the
repository.

A Sorting Framework for Gathering Timings

Your first task, for 15 points, is to develop a program to perform an empirical study of the efficiency
of these sorting algorithms. Your program should operate on arrays of int values. It should have
command-line options to set the array size, the number of trials (to improve timing accuracy), the
ability to generate initial data that is sorted, nearly sorted, completely random, and reverse sorted
(use the class you wrote for the previous assignment for array population). Design your program
to make it easy to implement additional sorting algorithms later.



CSIS 385 Design and Analysis of Algorithms Spring 2019

• Use command line parameters rather than prompts, as this makes it much easier when run-
ning many (likely hundreds or even thousands) of trials to generate timing results. In Java,
args[] has what you need! If you don’t know or remember how to run with command-line
parameters inside your IDE, run your Java program at the command line. That’s what you’ll
want to do when generating timing results anyway.

• You will need one or more methods to implement each sorting algorithm. You should write
your own code, but you may base it on any descriptions of these algorithms you wish (pseu-
docode from our text might be a good choice). Recursion is great in many circumstances,
but avoid recursive implementations for this study, as they will be slower and more likely to
run out of memory than their iterative counterparts.

• Write one big program rather than lots of little ones. This will help you avoid repeated code
as you implement each of the sorting algorithms.

• Even though a single program will be able to run a variety of sorting algorithms on different
sizes and initial ordering of input, a single execution of your program should only run one
such combination (though possibly many trials of that same run to improve timing accuracy).

• Be careful that you don’t reuse an array of values for multiple runs without re-populating it,
since all but the first could end up having already-sorted data as input.

• Your program should measure and report both the elapsed time and basic operation counts for
each problem instance. The basic operation of interest for these comparison-based sorting
algorithms are the number of comparisons of data values and modification of array elements.

• A simple tabular format of output will help you manage the creation of tables and/or graphs
that you’ll need later. Something like

10000 bubble random .034693 49995000

might indicate for an input size of 10,000, using a bubble sort on random input took .034693
seconds and made 49,995,000 comparisons. Note that your output would also include the
number of modifications of array elements.

First Empirical Analysis Study

Perform an empirical analysis study for bubble sort, selection sort and insertion sort, on an appro-
priate range of data sizes and distributions. Use your sorting algorithm program to generate timing
data. Compare your timing results with your expectations based on our (theoretical) efficiency
analysis of these algorithms. Present your results as a formal laboratory report. (35 points)

• Include as many of the details of your test environment as you can: the type of processor
or processors in the computer including clock speed, cache sizes, memory sizes, the oper-
ating system and version running on the computer, and the Java version (or whatever other
language) you are using.

2



CSIS 385 Design and Analysis of Algorithms Spring 2019

• Include a brief description of the methodology for the tests. Describe the set of runs you are
going to perform and state the expected results based on the theory (e.g., n or n2 running
times).

• If you find discrepencies between your theoretical expectations and the timings and operation
counts you gather, explain to the best of your ability what you believe caused it.

• The runs should vary the input array size for each combination of sorting algorithm and input
data type. To get meaningful results, you want a pretty wide range of sizes. You might start
with an array of size 1000 (or better yet 1024) and double the size until you have an input
size of 1,000,000 (or better yet 1,048,576). Take the average or best times (and justify your
choice) for some number of runs, probably a few dozen to a few hundred. Then, plot your
results. Make sure your graphs have a meaningful title, legend, and axis labels. See if the
numbers fit the expected, e.g., n or n2, behavior.

• Include a summary of your raw timing results and operation counts (in tabular form), your
graphs of those results and your analysis of the results in your writeup. Full sets of raw
numbers are useful, but should be submitted separately in a big text file or spreadsheet,
rather than as part of the main writeup. There are likely to be too many numbers for anyone
to want to look at them all, but it is valuable to have them available.

Deliverables

A typical submission will include the source code for the program used to generate the results, a
PDF document that contains the formal writeup, and any spreadsheets or other files that include
the raw data.

The formal writeup should follow the format of the sample empirical study that will be posted soon.
It should have a section that includes a brief introduction to the task, including test environment
information. There should then be a section for each algorithm that describes specifics of that
algorithm, the theoretical expectations (including best/average/worst cases, where applicable), a
summary of your timings and counts in tabular format, graphs illustrating these results, followed by
more text that analyzes the results, comparing with the theoretical expectations. A brief conclusion
section should summarize the study’s results.

3


