
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2019

Problem Set 2
Due: 4:00 PM, Friday, February 15, 2019

You may work alone or in a group of 2 or 3 on this assignment. However, in order to make sure
you learn the material and are well-prepared for the exams, you should work through the problems
on your own before discussing them with your partner(s), should you choose to work in a group.
In particular, the “you do these and I’ll do these” approach is sure to leave you unprepared for the
exams.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 4:00 PM, Wednesday, February 6, 2019. This
applies to those who choose to work alone as well!

There is a significant amount of work to be done here, and you are sure to have questions. It will
be difficult if not impossible to complete the assignment if you wait until the last minute. A slow
and steady approach will be much more effective.

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named ps2-yourgitname, for this problem set. Only one member of the group should follow
the link to set up the repository on GitHub, then others will be granted write access upon receipt
of an email clearly specifying the GitHub id used to create the group’s repository, and the GitHub
id(s) of other group members. Those group members will then receive an invitation link that will
grant access.

Submitting
Please submit a hard copy (typeset preferred, handwritten OK but must be legible) for all written
questions. Only one submission per group is needed.

Your submission requires that all required code deliverables are committed and pushed to the
master for your repository’s origin on GitHub. If you see everything you intend to submit when
you visit your repository’s page on GitHub, you’re set.

CSIS 385 Design and Analysis of Algorithms Spring 2019

Programming Task: Exhaustive Search
Sometimes an exhaustive search algorithm considers all permutations of a set. It is not obvious
though how to generate these permutations in a program. Write a program that prints all permu-
tations of integers 1..n. Your program should take n as an input value, and it should work for any
n ≥ 1. If you would like to use a language other than Java, ask, and it will likely be approved. (12
points)

Take a highly recursive approach: choose each next possible unused value and follow it by all
permutations of the remaining values. Do not use algorithms like those in Levitin Section 4.3.
We’re focusing on brute force solutions here.

Question 1:
Explain clearly how your program works, including the purpose of any major variables and/or
parameters. (3 points)

Homework Set Problems

Question 2:
Levitin Exercise 2.3.1, p. 67 (2 points)

Question 3:
Levitin Exercise 2.3.2, p. 67 (2 points)

Question 4:
Compare the asymptotic growth rates of the following pairs of functions and decide if one
grows faster than the other or if they grow at the same rate. Prove your answers using limits.
All logarithms are base 2, unless otherwise noted. (5 points)

a. 2
9
n3 + 6n2 − 12 and n3

b. n log2 n and n log n

c. 4logn and n

d. 2n and 2
3n
2

e. na and nb, where a and b are arbitrary fixed constants such that a > b > 0.

2

CSIS 385 Design and Analysis of Algorithms Spring 2019

Question 5:
Prove the following using limits (4 points):

a. n ∈ Ω(log n)

b. 2n4 + 16n ∈ Θ(n4)

c. n ∈ Θ(n + n
1
2)

d. 2
5
n2 − 17n + 3 ∈ O(n2 log n)

Question 6:
For each of the following functions, indicate the class O(g(n)) to which the function belongs.
Use the “smallest” g(n) possible to obtain the tightest bound, unless otherwise specified.
Prove your assertions using the definition of O(g(n)) (i.e., produce constants). (6 points)

a. 7n2 + 9n− 1200

b. (n2 + 5n)3

c. n log n, use g(n) = n2

Question 7:
For each of the following functions, indicate the class Ω(g(n)) to which the function belongs.
Use the “largest” g(n) possible to obtain the tightest bound unless otherwise specified. Prove
your assertions using the definition of Ω(g(n)) (i.e., produce constants). (6 points)

a. 7n2 + 9n− 1200

b. 2n + n100

c. n log n, use g(n) = n

Question 8:
For each of the following functions, indicate the class Θ(g(n)) to which the function belongs.
Prove your assertions using the definition of Θ(g(n)) (i.e., produce constants). (6 points, 2
for the first, 4 for the second)

a. 7n2 + 9n− 1200 (hint: you’ve already done this, just bring it all together)

b. 5n3 − 128n2 − 50

3

CSIS 385 Design and Analysis of Algorithms Spring 2019

For the next four questions, consider this very wintry code segment.

for (i = 1; i <= n; i++)
System.out.println("Snowstorms!");
System.out.println("Noreasters!");
for (j = 1; j <= i; j++) {

System.out.println("Blizzards!");
System.out.println("Squalls!");

}
}

Question 9:
Trace the code to count how many messages it prints for both n = 2 and n = 3. (1 point)

Question 10:
Write an expression involving two summations that counts the number of messages it prints
for any value of n. (2 points)

Question 11:
Simplify your expression to get a closed form formula for the number of messages it prints.
Show your work. (2 points)

Question 12:
Check your formula from the previous question by substituting n = 2 and n = 3 to see if it
matches your hand-traced answers to the first question in this section. (1 point)

4

CSIS 385 Design and Analysis of Algorithms Spring 2019

Question 13:
Suppose you have a gift certificate from your favorite restaurant worth exactly $d. You want
to buy exactly two different meals from the restaurant, and you want their cost to exactly
equal $d so that you spend the full amount of the gift certificate. Write a brute force algorithm
that takes as input an array of the costs of the meals you like and outputs true if there are two
distinct meals in the array whose costs sum to $d For example, suppose the array that contains
the meal prices is P = {4.00, 2.25, 7.25, 10.00, 11.00, 8.20, 12.75, 3.50, 9.99}, and the gift
certificate’s value d is $10.00. Then the output would be true because $2.25 + $7.25 = $10.00.
For this exercise, design a brute force algorithm solving this problem using Θ(n2) operations
in the worst case. Use the pseudocode below to get started. You do not need to write an
implementation, just a pseudocode algorithm. (10 points)

ALGORITHM GIFTCERTIFICATE(P , d)
//Input: a set of meal prices P [0..n− 1]
//Input: a gift certificate value d
//Output: true only if 2 distinct prices in P add to exactly d

Question 14:
What does it mean for a sorting algorithm to be stable? (1 point)

Question 15:
Describe two circumstances where sorting of data is needed, such that for one of the circum-
stances it is important that the algorithm used for sorting is stable, and one where it does not
matter. (2 points)

Question 16:
Is bubble sort as we studied in class a stable sorting algorithm? Explain briefly. (1 point)

Question 17:
Is selection sort as we studied in class a stable sorting algorithm? Explain briefly. (1 point)

Question 18:
Levitin Exercise 1.3.1, p. 23 (4 points)

5

CSIS 385 Design and Analysis of Algorithms Spring 2019

Question 19:
Count the number of character comparisons made by the BruteForceStringMatch algorithm
when applied to the pattern and text below. Explain how you arrived at your answer. (4
points)

text: FROM_COMPUTER_SCIENCE_COMES_COMPUTING_FUN

pattern: COMPUTERS

Note that the text is 41 characters long, and the pattern is 9 characters long.

Question 20:
Levitin Exercise 3.2.6, p. 107 (3 points)

For the next 4 questions, suppose you wish to take an input string and count how many substrings
you can form from it such that each substring starts with [and ends with]. For example, the
input string]385[contains 0 such substrings, and the input string B[][RA[[]CK][[E]T[S
contains 15 such substings.

Question 21:
List the 15 substrings of the input string above that start with [and end with]. (3 points)

Question 22:
Write pseudocode for a very brute-force algorithm that will solve this problem. Do not try to
be efficient. (5 points)

Question 23:
Determine the efficiency class of your algorithm for an input string of length n, and briefly
justify. Specify both best and worst cases if appropriate (don’t worry about trying to nail
down an average case). (4 points)

Question 24:
Now write a more efficient (but still just brute-force) algorithm to solve this problem in Θ(n)
time. (5 points)

Question 25:
Consider an instance of the Knapsack Problem in which there are n=4 items with weights 13,
7, 4, and 15 and the knapsack can hold up to a total weight of 24. The item values are 30,
15, 40, and 60. Enumerate all the packings of the knapsack that would be considered using
an exhaustive search algorithm solving this problem, and circle the packing that would be
selected as the best solution. (5 points)

6

