
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2019

Problem Set 1
Due: start of class, Friday, February 1, 2019

You may work alone or in a group of 2 or 3 on this assignment. However, in order to make sure
you learn the material and are well-prepared for the exams, you should work through the problems
on your own before discussing them with your partner(s), should you choose to work in a team.
In particular, the “you do these and I’ll do these” approach is sure to leave you unprepared for the
exams.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 4:00 PM, Monday, January 28, 2019. This
applies to those who choose to work alone as well!

There is a significant amount of work to be done here, and you are sure to have questions. It will
be difficult if not impossible to complete the assignment if you wait until the last minute. A slow
and steady approach will be much more effective.

Getting Set Up
You will receive an email with the link to follow to set up your GitHub repository, which will be
named ps1-yourgitname, for this problem set. Only one member of the group should follow
the link to set up the repository on GitHub, then others will be granted write access.

Submitting
Please submit a hard copy (typeset preferred, handwritten OK but must be legible) for all written
questions. Only one submission per group is needed.

Your submission requires that all required code deliverables are committed and pushed to the
master for your repository’s origin on GitHub. If you see everything you intend to submit when
you visit your repository’s page on GitHub, you’re set.

Complexities You Already Know

Question 1:
As a review of your work in prerequisite courses, indicate and briefly justify (in words,
not mathematically) the “Big O” complexity for each of the operations below. Differenti-
ate among best, average, and worst cases and under what circumstances they occur, where
relevant. Specify the basic operation you are counting in each case. You may use any trust-
worthy resource, but any such resource must be cited. Be sure you understand any answers
you need to look up, as you will see some of these or very similar questions as quiz or exam
questions soon. (20 points)

CSIS 385 Design and Analysis of Algorithms Spring 2019

• Find the largest value in an unsorted array of n integers.

• Perform a binary search in a sorted array of n integers.

• Add an element to an ArrayList that contains n values, using the default add method.

• Add an element to a singly-linked list that contains n values using the most efficient possible
add method.

• Add an element to a sorted ArrayList that contains n integers, and which has capacity
available to store the new value.

• Insert a new value into a balanced (e.g., AVL) binary search tree that contains n values.

• Remove the root of a min-heap that contains n values.

• Sort an array of n integers using insertion sort.

• Determine if a specific value is currently stored in a sorted array of n integers.

• And one that you probably haven’t seen, but should be able to reason out: count the number
of times a specific value occurs in a sorted array of n integers.

Programming Task: A New Graph Method
In an undirected graph, such as the HighwayGraph from Lab 2, the degree of a vertex is the
number of adjacent (undirected) edges.

1. Your repository includes a fresh copy of the HighwayGraph.java starter you used for
Lab 2.

2. Add a new method to the Vertex class that computes the degree of the vertex with a given
number. So the method call added in main:

int d = g.vertices[12].degree();

would compute and return the degree of vertex 12 and store it in d. (4 points)

Of course, the above could be a good test, but you do not need to include such tests in your
final submission.

3. Remove the System.out.println(g); line from the given main method.

4. Add code in main that computes and prints a table of the number of vertices of each degree
in the graph. To do this efficiently in terms of memory, do not store lists of the vertices of
every degree. You only need the counts, so only store the counts. Further, your solution
should work for any maximum degree but should be memory efficient. That is, your storage
should be O(maxdegree), not O(|V |) or O(|E|). (7 points)

2

CSIS 385 Design and Analysis of Algorithms Spring 2019

5. Add code in main that finds the largest degree of all the waypoints (vertices) in the graph,
and then prints out a line containing the name of the input graph file, the largest degree, and
lines for each of the vertex labels and their coordinates which have that largest degree. So
here, you will need to store a list of vertices, but only store it for the largest degree, again so
we are not wasting memory on things that are not needed. (6 points)

You should download and test with several of the graphs (include some larger ones, and the big one:
tm-master.tmg.) on the METAL web site at http://travelmapping.net/graphs/.
Your code will be tested on a wide variety of graph inputs. You can check correctness on small
graphs by drawing them by hand or looking at them in HDX.

The reference solution produces the following output for the region graph for the state of Missouri:

Graph MO-region.tmg. |V| = 4658, |E| = 5394
Vertex degree counts:
0: 0
1: 135
2: 3307
3: 830
4: 381
5: 5
All vertices of degree 5
MO15/US24_E/US24BusPar (39.493634,-92.000027)
MO100@TukBlvd&US66HisMan@US66His_E&US66HisStL@MO100 (38.618748,-90.201691)
I-35@12&I-435@52B&MO110Han@I-35(12) (39.206404,-94.49156)
I-435(71)/I-49/I-470/US50/US71 (38.94142,-94.53685)
MO14/US65_N/US65BusOza (37.023593,-93.228714)

Your program should match this output format. You do not need to include test results in your
submission.

Programming Task: Generating Example Arrays
In future problem sets, you will be asked to perform empirical analyses on the sorting algorithms
we will be studying. To do this, you will need to generate input arrays for the sorting algorithms.
In order to test the best, worst, and average cases of some of these algorithms, you will need to
generate input arrays with various characteristics. For simplicity, we will work with arrays of int.

• an array filled with n random values within a given range

• an array filled with n values sorted in ascending order

• an array filled with n values sorted in descending order

• an array filled with n values “nearly” sorted in ascending order

3

CSIS 385 Design and Analysis of Algorithms Spring 2019

Requirements:

• You may use any programming language, but be aware that you will need to implement the
empirical analysis studies later using this code, so you will either need to do those studies in
the same language or rewrite these generators later in any new language you choose.

• If you use Java, implement it within a class IntArrayPopulator that includes static
methods to fill a given array of intwith numbers matching each of the above characteristics,
and a provide a main method that thoroughly tests these methods for various values of n
and ranges. Be sure you can achieve similar functionality if you choose a different language.

• By taking the array to be filled as a parameter, you’ll be able to reuse the arrays in your
studies rather than re-allocating them each time.

• n will be determined by the length of the array passed to your methods.

• It is important that you generate these efficiently – for example, you should not generate
sorted input by generating random input then sorting it. Generate it in sorted order right
from the start.

• Your method to fill arrays with nearly sorted values should take a parameter that specifies
the fraction of entries that are out of order. For example, if the parameter has a value of 0.05,
approximately one of out of each 20 array slots should contain a value that’s out of order.
There are many reasonable ways to accomplish this.

Grading for the IntArrayPopulator will total 20 points: 3 points for the correctness of each
of the 4 generator methods (including efficiency), 5 points for sufficient tests, and 3 points for
design, documentation, and style.

4

CSIS 385 Design and Analysis of Algorithms Spring 2019

Written Questions on Graph Representations
For the questions below, consider the graph representations discussed in class for storing directed
graphs.

Suppose that the amount of memory required by the adjacency matrix graph representation is
exactly |V |2

8
bytes1, and that the exact amount of memory required by the adjacency list graph

representation is exactly 32|V |+ 32|E| bytes2.

Question 2:
If you have a graph with 221 (just over 2,000,000) vertices and each vertex has 4 outgoing
edges, exactly how much memory in gigabytes is needed to store the graph using each repre-
sentation? For each representation, can it fit into the 32GB of main memory which you might
find in a high end PC today? (3 points)

Question 3:
Graphs that have only a few number of edges per vertex are known as sparse graphs. A graph
with a high number of edges per vertex is said to be dense. Suppose you have a complete
directed graph of 221 vertices. Here every vertex has a directed edge to all the other vertices.
This is the “densest” graph there is! Exactly how much memory is needed to store the graph
using each representation? Express your answer in gigabytes. (4 points)

Question 4:
For a graph with 221 vertices, where is the “break even” point, measured by |E|, below which
the adjacency list representation is more memory efficient, and above which the adjacency
matrix representation is more efficient? (4 points)

Question 5:
What is the average vertex out-degree corresponding to your answer from the previous ques-
tion? (2 points)

1This assumes each Boolean value in the array is stored as a single bit.
2This assumes 8 bytes for each reference in the vertices[] array, 24 bytes for each Vertex object (8 bytes

for the head reference plus 16 bytes needed by Java to store housekeeping information about each Vertex object),
and 32 bytes per Edge object (8 bytes for the integer dest, 8 bytes for the next reference, and 16 bytes to store Java
housekeeping information about each Edge object).

5

