
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2019

Topic Notes: 2-3 Trees

You are familiar with the idea of a binary search tree and with the importance of maintaining a bal-
ance condition in those binary search trees to maintain the Θ(log n) behavior of many operations
on those trees.

Popular ways to maintain balance in binary search trees include AVL Trees and red-black Trees,
each of which places rules when parts of the tree will need to be “rotated” to restore balance after
an operation that modifies the tree has caused it to violate its balance condition.

Here, we will consider another variation on the search tree that maintains balance during construc-
tion by allowing nodes of the tree to contain multiple keys. Therefore, these are not binary search
trees, but they are still balanced search trees. The specific construct will will study is called a 2-3
Tree.

Key features and properties of a 2-3 tree include:

• Each node in the tree stores either 1 or 2 key values

• Nodes that are storing 1 key value are called 2-nodes and have either 0 (when a leaf node) or
2 (when an interior node) children

• Nodes that are storing 2 key values are called 3-nodes and have either 0 (when a leaf node)
or 3 (when an interior node) children

• A valid 2-3 tree is always perfectly balanced, in the sense that every node in the tree’s bottom
level is a leaf, and every other node in the tree is an interior node

In class, we will work through examples of building 2-3 trees. The idea is very similar to that of
inserting into an AVL tree or other type of balanced tree:

• We insert the value by visiting the interior nodes and deciding whether the new value should
be added to its left or right subtree (for a 2-node) or its left, middle, or right child (for a 3-
node). 2-nodes work just like nodes in a traditional binary search tree in that values smaller
than its key go to the left subtree, and values larger than its key go to the right subtree. In
3-nodes, we have 3 choices. Values smaller than both keys go to the left subtree, values
between the two keys go to the middle subtree, and values larger than both keys go to the
right subtree.

• Once a leaf node is encountered, the value is added to that leaf. If the leaf was a 2-node,
it becomes a 3-node, and we are done. If the leaf was a 3-node, it would then be a 4-node
(one containing 3 keys and with potentially 4 children). This is not permitted in a 2-3 tree,



CSIS 385 Design and Analysis of Algorithms Spring 2019

so the tree must now be reconfigured to be a 2-3 tree once again. This is accomplished by
splitting the node into two new 2-nodes, one with the node’s smallest value and one with the
node’s largest. The middle value is promoted to the parent. If the node was already the root
of the entire tree, the promoted value will become the new root. Otherwise, the middle value
is added as a new key to the parent. If it was a 2-node, it is now a 3-node and we are done.
Otherwise, it is now a 4-node, and must again be split. This process continues back up the
tree until either a 2-node becomes a 3-node and we can stop, or the entire tree gets a new
root.

We will run through one or two examples of the construction of 2-3 trees in class.

It is fairly straightforward to see that the height of a 2-3 tree containing n keys falls between log3 n
(for a tree consisting of only 3-nodes) and log2 n (for a tree consisting only of 2-nodes).

From this, we can see that an insertion is Θ(log n), because finding the leaf for insertion will
involve either 1 or 2 comparisons at each level, of which there are no more than log2 n. And then if
the tree needs configuration, the changes can only propagate back up through those same number
of levels, possibly introducing a new level in the case of a new root being created.

Let’s consider an algorithm to check if a 2-3 tree contains a given value:
ALGORITHM CONTAINS23TREE(T, k)

//Input: a 2-3 tree node T , a search key k
//Output: a boolean indicating whether k is stored anywhere in the 2-3 tree rooted at T
if T is a 2-node then

if T.key1 = k then
return true

if T is a leaf then
return false

// it’s not a leaf, we need to search in a child
if k < T.key1 then

return Contains23Tree(T.left, k)
else

return Contains23Tree(T.right, k)

else
// T is a 3-node
if T.key1 = k or T.key2 = k then

return true
if T is a leaf then

return false
// it’s not a leaf, we need to search in a child
if k < T.key1 then

return Contains23Tree(T.left, k)
else if k > T.key2 then

return Contains23Tree(T.right, k)
else

return Contains23Tree(T.middle, k)

2



CSIS 385 Design and Analysis of Algorithms Spring 2019

We can quickly note that this algorithm has no loops, and in the worst case it needs to recurse to a
leaf node. Since the height of the tree is Θ(log n), the entire algorithm is Θ(log n).

We will write additional algorithms to operate on 2-3 trees.

3


