
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2018

Topic Notes: Introduction and Overview

Welcome to Design and Analysis of Algorithms!

What is an Algorithm?
A possible definition: a step-by-step method for solving a problem.

An algorithm does not need to be something we run on a computer in the modern sense. The
notion of an algorithm is much older than that. But it does need to be a formal and unambiguous
set of instructions.

The good news: if we can express it as a computer program, it’s going to be pretty formal and
unambiguous.

Example: Computing the Max of 3 Numbers
Let’s start by looking at a couple of examples and use them to determine some of the important
properties of algorithms.

Our first example is finding the maximum among three given numbers.

Any of us could write a program in our favorite language to do this:

int max(int a, int b, int c) {
if (a > b) {

if (a > c) return a;
else return c;

}
else {

if (b > c) return b;
else return c;

}
}

The algorithm implemented by this function or method has inputs (the three numbers) and one
output (the largest of those numbers).

The algorithm is defined precisely and is deterministic.

This notion of determinism is a key feature: if we present the algorithm multiple times with the
same inputs, it follows the same steps, and obtains the same outcome.



CSIS 385 Design and Analysis of Algorithms Spring 2018

A non-deterministic procedure could produce different outcomes on different executions, even
with the same inputs.

Code is naturally deterministic – how can we introduce non-determinism?

It’s also important that our algorithm will eventually terminate. In this case, it clearly does. In
fact, there are no loops, so we know the code will execute in just a few steps. An algorithm is
supposed to solve a problem, and it’s not much of a solution if it runs forever. This property is
called finiteness.

Finally, our algorithm gives the right answer. This very important property, correctness, is not
always easy to achieve.

It’s even harder to verify correctness. How can you tell if you algorithm works for all possible valid
inputs? An important tool here: formal proofs.

A good algorithm is also general. It can be applied to all sets of possible input. If we did not care
about generality, we could produce an algorithm that is quite a bit simpler. Consider this one:

int max(int a, int b) {
if (a > 10 && b < 10) return a;

}

This gives the right answer when it gives any answer. But it does not compute any answer for many
perfectly valid inputs.

We will also be concerned with the efficiency in both time (number of instructions) and space
(amount of memory needed).

Why Study Algorithms?
The study of algorithms has both theoretical and practical importance.

Computer science is about problem solving and these problems are solved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and correctness of these solutions.

Practically, a study of algorithms provides an arsenal of techniques and approaches to apply to the
problems you will encounter. And you will gain experience designing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both the design and analysis of algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algorithms are important, but it is also impor-
tant to know if there are other possible algorithms that might be better. We would like to establish
theoretical lower bounds on the time and space needed by any algorithm to solve a problem, and
to be able to prove that a given algorithm is optimal. We would also like to be able to prove that
some things are impossible!

2



CSIS 385 Design and Analysis of Algorithms Spring 2018

Some Course Topics
Some of the problems whose algorithmic solutions we will consider include:

• Searching

• Shortest paths in a graph

• Minimum spanning tree

• Primality testing

• Traveling salesman problem

• Knapsack problem

• Chess

• Towers of Hanoi

• Sorting

• Program termination

Some of the approaches we’ll consider:

• Brute force

• Divide and conquer

• Decrease and conquer

• Transform and conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and bound

• Space and time tradeoffs

The study of algorithms often extends to the study of advanced data structures. Most should be
familiar; others might be new to you:

• lists (arrays, linked, strings)

• stacks/queues

3



CSIS 385 Design and Analysis of Algorithms Spring 2018

• priority queues

• graph structures

• tree structures

• sets and dictionaries

Finally, the course will often require you to write formal analysis and often proofs. You will prac-
tice your technical writing. As part of this, you may wish to gain experience with the mathematical
typesetting software LATEX.

Pseudocode
We will spend a lot of time looking at algorithms expressed as pseudocode.

Unlike a real programming language, there is no formal definition or standard “dialect” of “pseu-
docode”. In fact, any given textbook is likely to have its own style for pseudocode.

Our text has a specific pseudocode style. I will aim to approximate the book’s style, but some-
times my own style looks more like Java or C++ code. Please try to do the same when you write
pseudocode. It doesn’t have to match the text exactly, but should be close.

The book’s dialect:

• omits variable declarations

• indentation shows scope of for, if, and while statements (no curly braces!)

• arrow← used for assignment

• single = for equality comparison

• // used for comments

• no semicolons!

A big advantage of using pseudocode is that we do not need to define types of all variables or
specify complex structures.

Counting Basic Operations: Bubble Sort
A sorting algorithm so simplistic, you might not have even studied it previously is called bubble
sort. Here’s a version.

ALGORITHM BUBBLESORT(A)
//Input: an array A[0..n− 1]
for i← 0..n− 2 do

4



CSIS 385 Design and Analysis of Algorithms Spring 2018

for j ← 0..n− 2 do
if A[j + 1] < A[j] then

swap A[j + 1] and A[j]

Let’s simulate it!

The comparison and swap operations are examples of basic operations of the algorithm. We often
wish to count the number of times these basic operations occur to help us analyze the cost of
an algorithm. We will focus here on the comparison, since it happens every time the inner loop
iterates.

(To be computed in class: each for loop becomes a summation!)

Counting Basics
Let’s recall some old favorites from Discrete Math:

8∑
i=5

1 =

u∑
i=l

1 =

8∑
i=5

N =

u∑
i=l

N =

Also recall that summations can take advantage of associativity:

u∑
i=l

(a+ b) =
u∑
i=l

a+
u∑
i=l

b

And a couple others worth remembering/thinking about:

N∑
i=1

i = 1 + 2 + 3 + ...+N =

u∑
i=l

i =

5



CSIS 385 Design and Analysis of Algorithms Spring 2018

Improving Bubble Sort
When we simulated the version above, there were some comparisons made that we know never
would result in any swaps.

Let’s think about how we can change the bounds of the inner loop to avoid making those compar-
isons:

ALGORITHM IMPROVEDBUBBLESORT(A)
//Input: an array A[0..n− 1]
for i← 0..n− 2 do

for j ← 0.. do
if A[j + 1] < A[j] then

swap A[j + 1] and A[j]

In the lab exercise for today, you will analyze the improved version.

Example: Greatest Common Denominator
We first consider a very simple but surprisingly interesting example: computing a greatest common
denominator (or divisor) (GCD).

Recall the definition of the GCD:

The gcd of m and n is the largest integer that divides both m and n evenly.

For example: gcd(60,24) = 12, gcd(17,13) = 1, gcd(60,0) = 60.

One common approach to finding the gcd is Euclid’s Algorithm, specified in the third century B.C.
by Euclid of Alexandria.

Euclid’s algorithm is based on repeated application of the equality:

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

More precisely, application of Euclid’s Algorithm follows these steps:

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

And a pseudocode description:

6



CSIS 385 Design and Analysis of Algorithms Spring 2018

// m,n are non-negative, not both zero
Euclid(m, n) {

while (n != 0) {

r = m mod n
m = n
n = r

}
return m

}

It may not be obvious at first that this algorithm must terminate.

How can we convince ourselves that it does?

• the second number (n) gets smaller with each iteration and can never become negative

• so the second number in the pair eventually becomes 0, at which point the algorithm stops.

Euclid’s Algorithm is just one way to compute a GCD. Let’s look at a few others:

Consecutive integer checking algorithm: check all of the integers, in decreasing order, starting
with the smaller of the two input numbers, for common divisibilty.

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop; otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

This algorithm will work. It always stops because every time around, Step 4 is performed, which
decreases t. It will eventually become t=1, which is always a common divisor.

Let’s run through the computation of gcd(60,24):

Step 1 Set t=24

Step 2 Divide m=60 by t=24 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=23, proceed to Step 2

Step 2 Divide m=60 by t=23 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=22, proceed to Step 2

7



CSIS 385 Design and Analysis of Algorithms Spring 2018

Step 2 Divide m=60 by t=22 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=21, proceed to Step 2

Step 2 Divide m=60 by t=21 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=20, proceed to Step 2

Step 2 Divide m=60 by t=20 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 by t=20 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=19, proceed to Step 2

Step 2 Divide m=60 by t=19 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=18, proceed to Step 2

Step 2 Divide m=60 by t=18 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=17, proceed to Step 2

Step 2 Divide m=60 by t=17 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=16, proceed to Step 2

Step 2 Divide m=60 by t=16 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=15, proceed to Step 2

Step 2 Divide m=60 by t=15 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 by t=15 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=14, proceed to Step 2

Step 2 Divide m=60 by t=14 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=13, proceed to Step 2

Step 2 Divide m=60 by t=13 and check the remainder. It is not 0, so we proceed to Step 4

Step 4 Set t=12, proceed to Step 2

Step 2 Divide m=60 by t=12 and check the remainder. It is 0, so we proceed to Step 3

Step 3 Divide n=24 by t=12 and check the remainder. It is 0, so we return t=12 as our gcd

However, it does not work if one of our input numbers is 0 (unlike Euclid’s Algorithm). This is a
good example of why we need to be careful to specify valid inputs to our algorithms.

Another method is one you probably learned in around 7th grade.

8



CSIS 385 Design and Analysis of Algorithms Spring 2018

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and return it as gcd(m,n)

So for our example to compute gcd(60,24):

Step 1 Compute prime factorization of 60: 2, 2, 3, 5

Step 2 Compute prime factorization of 24: 2, 2, 2, 3

Step 3 Common prime factors: 2, 2, 3

Step 4 Multiply to get our answer: 12

While this took only a total of 4 steps, the first two steps are quite complex. Even the third is
not completely obvious. The description lacks an important characteristic of a good algorithm:
precision.

We could not easily write a program for this without doing more work. Once we work through
these, it seems that this is going to be a more complicated method.

We can accomplish the prime factorization in a number of ways. We will consider one known as
the sieve of Eratosthenes:

Sieve(n) {
for p = 2 to n { // set array values to their index

A[p] = p
}
for p = 2 to floor(sqrt(n)) {

if A[p] != 0 { //p hasn’t been previously eliminated from the list
j = p * p
while j <= n {
A[j] = 0 //mark element as eliminated
j = j + p

}
}
// nonzero entries of A are the primes

Given this procedure to determine the primes up to a given value, we can use those as our candidate
prime factors in steps 1 and 2 of the middle school gcd algorithm. Note that each prime may be
used multiple times.

So in this case, the seemingly simple middle school procedure ends up being quite complex, since
we need to fill in the vague portions.

9


