
Computer Science 385
Design and Analysis of Algorithms
Siena College

Spring 2017

Homework Set 3
Due: Start of Class, Monday, April 10, 2017

You may work alone or with a partner on this assignment. However, in order to make sure you

learn the material and are well-prepared for the exams, you should work through the problems on

your own before discussing them with your partner, should you choose to work with someone. In

particular, the “you do these and I’ll do these” approach will not prepare you for the exams.

Please submit a hard copy: print your code (consider 2-up double-sided printing), and either a

typeset (preferred) or handwritten (must be legible) set of responses for the written problems.

Only one submission per group is needed.

There is a significant amount of work to be done here, and you are sure to have questions. It will

be difficult if not impossible to complete the homework set if you wait until the last minute. A

slow and steady approach will be much more effective.

Written Problems

1. (10 points) In the fraudulent voters problem, the input consists of two arrays: V[0...n-1]

contains the names of n voters that participated in a recent election, and IE[0...m-1] contains

the names of m persons ineligible to vote (because of something such as a felony record, deceased,

etc...) In this problem, the task is to determine how many of the voters in V were actually ineligible

to vote. For example, for the two arrays below, 2 should be returned as the answer, because voters

”T. Smith” and ”J. Doe” were ineligible to vote. You may assume there are no duplicate names in

the arrays.

V[0...7] = {"A. Turing", "T. Smith", "B. McKeon", "G. Gordon",

"J. Doe", "M. Taylor"}

IE[0...4] = {"Z. McBeth", "J. Doe", "T. Jones", "T. Smith", "N. Wirth"}

You could easily write a brute force algorithm solving this problem in O(nm) time. But the number

of voters in both arrays is very large, and so an asymptotically more efficient algorithm is required.

Write such an algorithm below, give its worst case running time, and briefly explain how you got

it.

// Returns the number of voters that were ineligible to vote.

ALGORITHM NumFraudulentVoters(V[0...n-1], IE[0...m-1])

CSIS 385 Design and Analysis of Algorithms Spring 2017

2. (15 points) You learned about d-heaps as part of the last lab. You also know about heapsort,

which uses a 2-heap as an intermediate representation to sort the contents of an array. Let’s con-

sider a generalization of the heapsort idea:

• First, insert the elements to be sorted into a priority queue (PQ).

• Then, remove the elements one by one from the PQ and place them, in that order, into the

sorted array.

For heapsort, the PQ is a 2-heap, but any PQ implementation would work (naive array- or list-

based with contents either sorted or unsorted, a d-heap, or even a binary search tree). Depending

on which underlying PQ is used, the sorting procedure will proceed in a manner similar, in terms

of the order in which comparisons occur, to one of the other sorting algorithms we have studied

(e.g., selection sort, quicksort, etc.). For each of the following underlying PQ structures, state

which sorting algorithm proceeds in the manner most similar to the PQ-based sort using that PQ

structure, and explain your answer. Each response should be at least a few sentences long, and

should discuss how the pattern of comparisons and swaps, and the resulting efficiency relates to

the sorting algorithm.

1. 1-heap

2. 3-heap

3. (n-1)-heap

4. binary search tree

5. balanced binary search tree

3. (15 points) For the robot coin collection problem described in section 8.1 of Levitin, do the

following:

a. Complete the pseudocode below that uses a recursive exhaustive search algorithm to solve it.

// Returns the maximum number of coins the robot can collect if she starts

// at row r and column c and only moves once cell right or down in each step

// and stops only when she reaches the lower right corner.

ALGORITHM RobotCoinCollection(r, c, C[1..n,1..m])

b. Now rewrite your algorithm from above so that it uses top-down dynamic programming to get a

recursive algorithm that is more efficient.

2

CSIS 385 Design and Analysis of Algorithms Spring 2017

// Assume each entry of sols[1..n][1..m] is initialized to -1 before

// the first call.

ALGORITHM RobotCoinCollection(r, c, C[1..n][1..m], sols[1..n][1..m])

c. What is the worst case running time of your algorithm in part (b)? Explain.

Dijkstra’s Road Trip

Your programming task for this assignment is to develop a simplified “driving directions” system

based on the mapping data you have been working with. It will be like taking a road trip with

Professor Dijkstra himself!

Overview of Basic Requirements

You should use a variant of Dijkstra’s Algorithm to compute shortest path from a given starting

point (a graph vertex) to a given destination point. The general form of Dijkstra’a Algorithm

computes the shortest paths from a starting vertex to all other vertices, but you will be able to stop

one you find a shortest path to the specified destination rather than calculating the shortest path to

all other places. You will also need to make sure that you can efficiently print/write the computed

route in the proper order (starting point to destination point).

Once a shortest path is computed, you will need to be able to output it to the terminal in a human-

readable form and to a file in a format plottable by METAL’s Highway Data Examiner (HDX).

For example, if you load the NY-all.tmg file (available from METAL’s graph repository at

http://tm.teresco.org/graphs/), and compute a shortest path for a few nearby points:

US9/NY2 (Latham Circle). and NY5/NY32 (next to the Times Union Center in downtown Al-

bany), your path would traverse the following points:

US9/NY2, US9/NY155, US9/NY378, US9/NY377,I-90(6)/US9,

US9/US9W, US9/NY32, NY5/NY32

3

CSIS 385 Design and Analysis of Algorithms Spring 2017

Your “human readable” output might look something like this:

Travel from US9/NY2 to US9/NY155

for 0.78 along US9, total 0.78

Travel from US9/NY155 to US9/NY378

for 2.24 along US9, total 3.02

Travel from US9/NY378 to US9/NY377

for 2.04 along US9, total 5.06

Travel from US9/NY377 to I-90(6)/US9

for 0.44 along US9, total 5.50

Travel from I-90(6)/US9 to US9/US9W

for 0.87 along US9, total 6.38

Travel from US9/US9W to US9/NY32

for 0.64 along US9, total 7.02

Travel from US9/NY32 to NY5/NY32

for 0.34 along NY32, total 7.36

Your plottable data for HDX should be in a “.pth” file. This file format must match the following:

START US9/NY2 (42.748115,-73.761048)

US9 US9/NY155 (42.736832,-73.76225)

US9 US9/NY378 (42.704925,-73.754568)

US9 US9/NY377 (42.675873,-73.747659)

US9 I-90(6)/US9 (42.669562,-73.748817)

US9 US9/US9W (42.659938,-73.759975)

US9 US9/NY32 (42.654285,-73.750019)

NY32 NY5/NY32 (42.649869,-73.752787)

Here, each line describes one “hop” along the route, consisting of the road name of the segment

(i.e., your edge label), the waypoint name (i.e., the label in your vertex), and the coordinates of that

point. The exception is the first line, where we substitute START, since you don’t have to take any

road to get to your starting point.

These files should be given a .pth extension. Once such a file is created, it can be visualized by

directing a browser at http://courses.teresco.org/metal/hdx/ and uploading the

.pth file in the file selection box at the top of the page.

Please take advantage of HDX to view the graphs themselves and your computed paths!

Starter Code

To get you started, a small collection of Java classes are provided that expand on the graph structure

we worked with earlier in the semester.

In particular, the HigwayGraph class, and its auxiliary classes, HighwayVertex, HighwayEdge,

and LatLng, provide much of the underlying functionality you will need. Note that most of the

fields are declared as protected, so you can access them directly from your code as long as it is

4

CSIS 385 Design and Analysis of Algorithms Spring 2017

also in Java’s “default” package. This is not ideal from a design perspective, but is done to simplify

much of the code so you can focus on the actual algorithm implementation.

There is also a class Dijkstra provided that processes the required command-line parameters

and sets up the HighwayGraph and finds references to the HighwayVertex objects for the

start and destination of the driving directions request.

Note that there is a named constant DEBUG that should be used to turn on or off “debugging”

output. It will be much easier to develop your Dijkstra’s algorithm implementation step-by-step

if you work on a small graph and print lots of information about the vertices and edges being

considered at each step by the algorithm. If you encapsulate all of this kind of output inside

if (DEBUG} { ... } blocks, you can simply set DEBUG to false when you want to turn it

off.

What You Need to Add

Your task is to implement Dijkstra’s algorithm to compute and report the shortest path from start

to dest.

You should follow the algorithm as discussed in class, with the following modifications:

• When in debug mode, your program should print out step-by-step information about every

significant step the algorithm takes (e.g., add/remove priority queue entries, finding a new

shortest path to add to the map/table).

• You should stop your algorithm as soon as you find the shortest path to the destination. This

will be the stopping condition on your main loop. You may assume that a path exists between

your starting and ending vertices, so you need not be concerned that the priority queue will

become empty.

• When we traced the algorithm in class and lab, the values in the table of shortest paths found

included both the last edge traversed and the total distance traversed. You will only need to

keep the last edge traversed.

When your main loop terminates (because you found the shortest path to dest), you will print out

the driving directions from start to dest.

If four command-line parameters were specified (that is, if args.length == 4), then args[3]

will contain the name of a file where you should write a .pth file with the route that can be plotted

on the map by HDX.

Implementation Details

• You are encouraged to make use of the provided classes as your graph implementation.

You should not need to modify those. Check first if you believe you need to do so. These

structures are already enhanced from what we studied earlier in the semester to include the

information needed by this algorithm.

5

CSIS 385 Design and Analysis of Algorithms Spring 2017

• Dijkstra’s algorithm uses two fundamental data structures: a map/table/dictionary and a pri-

ority queue. You may write your own implementations of these, but you are encouraged to

find and use appropriate implementations from the standard Java API. See the Map interface

and various classes that implement it. When you use a generic priority queue, the objects

you store must be Comparable, so the implementation can determine the correct order

to remove highest priority items. In our case, these will be the entries that have the lowest

cumulative distance from the start vertex.

• Since we will be working with “collapsed” format graphs, edges can specify intermediate

shaping points to improve map accuracy and distances. The majority of your implementation

can safely ignore these intermediate shaping points, since they are already considered when

edge lengths are computed during graph construction. However, they will come into play if

any of the edges on your shortest path being writted to a .pth file have such points. In that

case, they should be included in your .pth file for mapping accuracy.

For example, if you load the NY-all.tmg file and compute the path from NY29/NY30

(in Vail Mills) to NY30@AlgDr (in Wells), your route includes several edges with shaping

points. The .pth file in this case would be:

START NY29/NY30 (43.047397,-74.217067)

NY30 NY30@CR155 (43.051192,-74.215522)

NY30 NY30/NY349 (43.076704,-74.259381)

NY30 NY30_N/NY30A_N (43.094704,-74.279208)

NY30 NY30@HamPoiRd (43.188338,-74.198205)

NY30 NY30@BriSt (43.224055,-74.184923)

NY30 (43.245697,-74.197326) NY30@BenRd (43.255538,-74.225435)

NY30 (43.315726,-74.252729) (43.332128,-74.26981) NY30@PumHolRd (43.353382,-74.265475)

NY30 (43.363605,-74.292898) NY30@AlgDr (43.404038,-74.285989)

As seen above, the shaping points are listed between the route name (i.e., edge label) and the

vertex label where that edge leads. The coordinates of the destination is always last on the

line.

Bonus Opportunties

There are two opportunties to earn bonus points on this homework. Make your suggestions for

other bonus ideas and approved ideas will be added here.

1. Directions that mention every intersection, even those where you are simply supposed to con-

tinue along in the same direction on your current road, can be a little verbose. For 4 bonus

points, compress the human-readable directions to mention only those points where your

route changes (i.e., where the edge label changes from one segment to the next). For exam-

ple, getting directions in NY-all.tmg from US9/NY2 (Latham Circle) to NY86@MirLakeDr

(Lake Placid) results in a path length of 38. However, since many of those are consecutive

points from one I-87 exit to the next or along US 9, the compressed directions simplify to:

6

CSIS 385 Design and Analysis of Algorithms Spring 2017

Travel from US9/NY2 to US9/NY7

for 0.89 miles along US9, total 0.89

Travel from US9/NY7 to I-87(7)/NY7

for 0.35 miles along NY7, total 1.24

Travel from I-87(7)/NY7 to I-87@14&NY9P@I-87&NY9PTrkSar@NY9P

for 22.17 miles along I-87, total 23.41

Travel from I-87@14&NY9P@I-87&NY9PTrkSar@NY9P to

I-87(15)/NY9PTrkSar/NY29TrkSar/NY50

for 1.74 miles along I-87,NY9PTrkSar, total 25.15

Travel from I-87(15)/NY9PTrkSar/NY29TrkSar/NY50 to I-87(30)/US9

for 72.23 miles along I-87, total 97.38

Travel from I-87(30)/US9 to US9/NY73

for 2.14 miles along US9, total 99.52

Travel from US9/NY73 to NY9N_S/NY73_S

for 11.19 miles along NY73, total 110.71

Travel from NY9N_S/NY73_S to NY9N_N/NY73_N

for 1.64 miles along NY9N,NY73, total 112.36

Travel from NY9N_N/NY73_N to NY73/NY86

for 13.45 miles along NY73, total 125.81

Travel from NY73/NY86 to NY86@MirLakeDr

for 0.87 miles along NY86, total 126.68

2. For 2 bonus points, gracefully handle the situation where the start and dest vertices are

not connected. This could happen, for example, in Hawaii, if you ask for directions between

two points on different islands.

Deliverables and Grading Breakdown

The required functionality here is worth 60 points total.

• Correctness of your Dijkstra’s algorithm implementation (35 points)

– Demonstrate this by including a hard copy the debug output for the NY-all.tmg

graph finding the path from US9/NY2 to NY5/NY32, and another short test case of

your choice. Consider printing this 2-up and double sided, as it would likely be about

7 pages for the required example alone.

• Correctness of printed human-readable directions (10 points)

– Demonstrate this by including a hard copy of your detailed directions for the NM-all.tmg

graph from NM475/US84/US285 (the center of Santa Fe) to NM150@ErnBlaRd

(the entrance to the Taos Ski Valley parking lot) and another test case of your choice

where the shortest path has at least 25 points along the way.

• Correctness of .pth files containing shortest path (5 points)

7

CSIS 385 Design and Analysis of Algorithms Spring 2017

– Demonstrate this by including printout (screen captures) of your route loaded into HDX

for the usa-all.tmg graph from US9/NY2 (Latham Circle again) to US41@5thAve

(downtown Naples, Florida). Include 3 screen captures: the closest view you can get

that has an overview of the entire route, a zoomed-in view showing the route from its

starting position to the Kingston area, and a zoomed-in view showing all of the route

as it passes through Maryland. Also do the same for a test case of your choice where

the shortest path has at least 250 points along the way.

• Documentation of your Dijkstra’s algorithm implementation (10 points)

– Include a printout of your Dijkstra class and any new classes you add. Again, please

consider 2-up and double-sided printing.

• Bonus items: if you complete functionality for bonus credit, include results of test cases that

demonstrate that the functionality is correct.

8

