
	

	

	

	

Names:	_____________________________________________________________________	

	

	

Learning	goals:	

• to	understand	the	source-removal	algorithm	for	topological	sort	
• to	be	able	to	apply	the	concept	of	binary	search	to	new	problems	
• to	better	understand	Mergesort	and	Quicksort	and	their	running	times	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

CSIS385 Algorithms 
Lab #6 : Divide/Decrease & Conquer Algorithms 



1. (5	Points)	Recall	that	a	topological	ordering	is	a	list	of	a	directed	graph’s	vertices	in	which	for	every	edge	
in	the	graph,	the	vertex	where	the	edge	starts	comes	before	the	vertex	where	the	edge	ends.		Below	is	
pseudocode	for	the	Source-Removal	Algorithm	which	computes	a	topological	ordering	of	the	vertices	in	
a	directed	acyclic	graph	(DAG).		Apply	the	algorithm	to	the	DAG	below.		List	the	vertices	in	the	order	in	
which	they	are	outputted	by	the	algorithm.			

	

	

	

	

	

	

	

	

	

	

	 	

Output	order:	________________________________________________	

	

2. (5	Points)	The	Source-Removal	algorithm	gives	one	topological	ordering	of	the	vertices,	but	there	may	
be	others.		For	the	graph	below,	how	many	different	valid	topological	orderings	of	its	vertices	are	there?	

	

	

	

	

	

	

	

	

			

C	B	

E	
A	

F	

D	

	



3. Finding	the	maximum.		
a. (3	Points)	Consider	an	unordered	array	A[0…n-1]	of	n	integers.		How	quickly	can	you	find	the	

maximum?		Describe	your	algorithm	in	one	sentence	below	and	give	its	worst	case	asymptotic	
running	time.	

	

		

b. (3	Points)	Considered	a	sorted	array	A[0…n-1]	of	n	integers.	How	quickly	can	you	find	the	maximum?		
Describe	your	algorithm	in	one	sentence	below	and	give	its	worst	case	asymptotic	running	time.	

	

		

c. (9	Points)	A	challenge!	Now	consider	a	sorted	array	A[0..n-1]	of	unique	integers	that	has	been	
shifted	some	positions	to	the	right	with	wrap	around.		For	example,	[19,	30,	35,	2,	3,	7,	9,	10,	15]	is	a	
sorted	array	that	has	been	shifted	3	positions.	As	another	example,	[18,	20,	21,	24,	25,	27,	29,	35,	
42,	5,	15]	is	a	sorted	array	that	has	been	shifted	9	positions.		Given	an	array	shifted	by	some	
unknown	amount,	the	problem	is	to	develop	an	efficient	algorithm	to	find	the	maximum	value	in	it.		
Below,	design	and	write	pseudocode	for	an	algorithm	whose	worst	case	running	time	is	
asymptotically	faster	than	linear.	

	
//	Returns	the	maximum	value	in	the	shifted	array	A[left…rite].			
//	The	first	call	to	this	algorithm	will	be	findMax(	A[0…n-1],	with	left	=	0	and	rite	=	n-1.	
ALGORITHM	findMax(	A[left…rite]	)	

	

	

	

	

	

	

	

	

	

	 	

	



4. Below	is	the	Mergesort	algorithm	from	class.			

	

	

	

	

	

	

	

a. (5	Points)	Show	the	recursive	call	tree	when	merge	sorting	the	array	A	=	[90,	70,	40,	20,	30,	50,	80,	
10].		Show	all	calls	to	mergesort	and	merge,	similar	to	how	the	first	call	is	done	below,	where	ms	is	
short	for	mergesort,	m	is	short	for	merge,	and	the	values	in	arrays	B	and	C	when	used	as	input	to	
merge	still	need	to	be	filled	in.	

ms(	A	=	[90,	70,	40,	20,	30,	50,	80,	10]	)	
m(	B	=	[																													],		C	=	[																													]	,	A[…])	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

b. (2.5	Points)	How	many	calls	to	mergesort	were	made	(counting	the	first	call):	__________	

ALGORITHM	mergesort(A[0..n-1])		
		if	n>1		

copy	first	half	of	array	A	into	a	temp	array	B		
copy	second	half	of	array	A	into	a	temp	array	C		
mergesort(B)		
mergesort(C)		
//	merge	B	and	C	into	A	
merge(B,	C,	A)			

ALGORITHM	merge(B[0..p-1],	C[0..q.1],	A[0..(p+q-1)])		
while	B	and	C	have	more	elements		

choose	smaller	of	items	at	the	start	of	B	or	C		
remove	the	item	from	B	or	C	&	add	it	to	the	end	of	A		

copy	remaining	items	of	B	or	C	into	A	



	
c. (2.5	Points)	How	many	calls	to	merge	were	made:	___________	

5. (12	Points)	In	Quicksort,	the	Partition	step	picks	a	pivot	and	then	rearranges	the	array	elements	so	that	
those	smaller	than	the	pivot	come	first,	followed	by	the	pivot,	followed	by	those	larger	than	the	pivot.		
Below	is	pseudocode	for	partitioning	the	values	A[left…rite]	about	the	pivot	element	A[left].				
	
ALGORITHM	Partition(	A[left…rite]	)	
		//	A[left…rite]	is	an	array	of	unique	non-negative	integers	
		p	ß	A[left]	
		i	ß	left	
		j	ß	rite	+	1	
		repeat	
	 repeat	i	ß	i	+	1	until	(	A[i]	>=	p	)		or		(	i	>	rite	)	
	 repeat	j	ß	j	-	1	until	A[j]	<=	p		

if	(	i	<	j	)	swap	A[i]	and	A[j]	
//	show	contents	of	array	A	and	values	of	i	and	j	at	this	point	in	code	

	 		until	i	>=	j	
		swap	A[left]	and	A[j]		
		return	j	

	
Suppose	the	array	A[0…9]	below	is	given	as	input	to	the	Partition	algorithm.	Show	the	contents	of	the	
array	after	each	iteration	of	the	outer	repeat	loop.		

	

12	 	3	 		1	 19	 25	 	8	 34	 	7		 45	 23	
	

After	first	iteration	of	outer	repeat	loop:			i	=	__________			j	=	___________	

12	 	3	 	1		 19	 25	 	8	 34	 	7	 45	 23	
				

After	second	iteration	of	outer	repeat	loop:			i	=	__________			j	=	___________	

12	 	3	 	1		 19	 25	 	8	 34	 	7	 45	 23	
	

After	third	iteration	of	outer	repeat	loop:	i	=	__________			j	=	___________	

12	 	3	 	1		 19	 25	 	8	 34	 	7	 45	 23	
	

After	outer	repeat	loop	is	done	and	last	swap	(just	before	the	“return	j”	statement)	is	done:	

12	 	3	 	1		 19	 25	 	8	 34	 	7	 45	 23	
	

6. (6	Points)	What	value	does	Partition	return	in	this	specific	example?	____________	
	
	

	



	
7. (5	Points)	Describe	in	words	what	the	last	swap	in	Partition	does.	

	
	
	
	

8. (4	Points)	In	general,	describe	in	words	what	“return	j”	returns	when	called	for	an	arbitrary	array	
A[left…rite].	
	
	
	
	

9. (10	Points)	What	is	the	worst	case	Big	O	running	time	of	Partition(A[left…rite])?	Express	your	answer	in	
terms	of	n,	the	number	of	elements	between	left	and	rite.	Explain	why	your	analysis	is	correct.			

	

	

	
	
	
	

The	complete	Quicksort	algorithm	is	given	below.	Use	it	to	answer	the	questions	that	follow.	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

10. (20	Points)	Consider	the	tree	of	subroutine	calls	made	when	Quicksort(	A[0…8]	)	above	is	called	with	
array	A[]	containing	the	values	{11,	55,	22,	77,	88,	44,	99,	33,	66}.		Fill	in	the	tree	of	subroutine	calls	
found	on	the	last	page	of	this	lab	using	the	Quicksort	and	Partition	algorithm	in	this	lab.	Show	calls	to	
both	Partition	and	Quicksort.	I	have	filled	in	four	boxes	for	you.	Follow	the	style	given	and	abbreviate	
Partition	and	Quicksort	with	P	and	QS.	

	
	

Quicksort(	A[left…rite]	)	
	 if	(	left	<	right	)	
	 	 s	ß	Partition(	A[left…right]	)	
	 	 Quicksort(	A[left…s	-1]		)	
	 	 Quicksort(	A[s+1…rite]		)	

	
	

ALGORITHM	Partition(	A[left…rite]	)	
p	ß	A[left]	
i	ß	left	
j	ß	rite	+	1	
repeat	
					repeat	i	ß	i	+	1	until	(	A[i]	>=	p	)		or		(	i	>	rite	)	
					repeat	j	ß	j	-	1	until	A[j]	<=	p		
					if	(	i	<	j	)	swap	A[i]	and	A[j]	

	 until	i	>=	j	
swap	A[left]	and	A[j]		
return	j	

	



	
	

11. (4	Points)	Write	a	recurrence	formula	for	Quicksort	when	the	pivot	in	every	call	to	Partition	is	the	
smallest	value	among	all	values	A[left…rite].		This	is	the	worst	case	for	Quicksort.	Find	a	closed	form	for	
your	recurrence	using	any	method	you	wish	(do	not	show	your	work	here).		Then	write	below	the	Big	O	
worst	case	running	time	for	Quicksort.	

	

	

	

	

	

	

	

	

	

12. (4	Points)	Write	a	recurrence	formula	for	Quicksort	when	the	pivot	is	the	median	value	in	every	call	to	
Partition.	To	keep	things	simple,	you	may	assume	that	there	are	exactly	n/2	items	to	the	left	of	the	
median	value	and	n/2	to	the	right.	This	is	the	best	case	for	Quicksort.	Find	a	closed	form	for	your	
recurrence	using	any	method	you	wish	(do	not	show	your	work	here).		Then	write	below	the	Big	O	best	
case	running	time	for	Quicksort.	

	

	
	

	 	



	

P(0…
8)	

Pivot	is	11	

Q
S(0..8)	

Q
S(0..-1)	

Q
S(1..8)	

	
	

	

	
	

	
	

	
	

	
	

	
	

	
	


