Computer Science 385

Analysis of Algorithms
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Limitations of Algorithms

We conclude with a discussion of the limitations of the poekalgorithms. That is, what kinds
of problems cannot be solved by any algorithm, or which va@tjuire a minimum cost, and what
is that minimum cost?

L ower Bounds

We wiill first look atlower boundswhich estimate the minimum amount of work needed to solve
a given problem.

Once we have established a lower bound, we know that no #igodan exist without performing
work equivalent to at least that of the upper bound.

Some examples:

the number of comparisons needed to find the largest elemarget ofn. numbers

number of comparisons needed to sort an array ofisize

number of comparisons necessary for searching in a sontayl @frn numbers

the number of comparisons needed to determine if all elesradratn array of: elements are
unique

e number of multiplications needed to multiply twox n matrices

Lower bounds may be exact counts or efficiency classes({{higA lower bound istight if there
exists an algorithm with the same efficiency as the lower doun

Some lower bound examples:

sorting: lower bound)(n logn), tight

searching in a sorted array: lower bounfogn), tight

determine element uniqueness: lower botd log n), tight

n-digit integer multiplication: lower bounf(n), tightness unknown

e multiplication ofn x n matrices: lower boun€(n?), tightness unknown

There are a number of methods that can be used to establish bonnds:

CS 385 Analysis of Algorithms Spring 2011

trivial lower bounds

information-theoretic arguments (decision trees)

adversary arguments

problem reduction

Trivial Lower Bounds

Trivial lower boundsare based on counting the number of items thast be processed in input
and generated as output to solve a problem.

Some examples:

e Generating all permutations of a set:oElements has a trivial lower bound Qfn!) since
all n! permutations must be generated. This lower bound is tiglcesive have algorithms
to do this that operate i@(n!).

e Evaluating a polynomial

p(x) = ant™ + an_12" " + -+ + ag

requires that each of the a,’s need to be processed, leading to a lower boun€ (ef).
Again, we have linear algorithms for this, so the bound ibttig

e Computing the product of twa x n matrices requires that each of the? numbers be
multiplied at some point, leading to a lower boundf?). No known algorithm can meet
this bound, and its tightness is unknown.

o A trivial lower bound for the traveling salesman problem barobtained a€(n?) based on
the number of cities and inter-city distances, but this isanaseful result, as no algorithm
comes anywhere near this lower bound.

One must take care in deciding how to count. One may thinktthaearch for an element in a
collection, the lower bound would involve looking at evelgraent. That would lead us to a linear
lower bound. But we know that in the case of a sorted array, weusa a binary search and find
the element in logarithmic time. The key lies with the wordu'sti’ in the definition of a trivial
lower bound. There is other information in that case (theeond)) that allows us to avoid ever
considering many of the elements.

I nformation-Theoretic Arguments

Rather than the number of inputs or outputs to proces#fanmation-theoretic lower bounts
based on the amount of information an algorithm needs toym®tb achieve its solution.

CS 385 Analysis of Algorithms Spring 2011

A binary search fits here — we are trying to find the locationgian value in a sorted array. Since
we know the array is sorted, we can, with each guess, elimimalf of the possible locations of
the goal, resulting in a lower bound (worst case)ogfn steps.

Decision treesare a model of an algorithm’s operation that can help us aealjgorithms such as
search and sort that work by comparisons.

In a decision tree, internal nodes represent comparisah$eanes represent outcomes. The tree
branches based on whether the comparison is true or false.

A simple tree for a search for the minimum among 3 numbers eafobnd in Figure 11.1 of
Levitin.

e The number of leaves may exceed the number of outcomes iithe sesult can be obtained
via different orders of comparisons.
e The number of leaves must be at least the total number oftgessitcomes.

e The operation of an algorithm on a particular input is modddg a path from the root to a
leaf in the decision tree. The number of comparisons is ewguile number of edges along
that path.

e Worst-case behavior is determined by the height of the dhgois decision tree.

It quickly follows that any such tree with a total bfeaves (outcomes) must hake> [log, [].
Levitin Figures 11.2 and 11.3 show decision trees for seleetnd insertion sort of 3 elements.

Our main interest here is to determine a tight lower boundamparison-based sorting:

Any comparison-based sorting algorithm can be represdiyjteddecision tree.

The number of leaves (outcomes) mustbe! to account for all possible permutations of
inputs.

The height of binary tree with! leaves> [log, n!].

This tells us the number of comparisons in the worst case
Oworst(n) > [logg n'-l ~ n10g2 n

for any comparison-based sorting algorithm.

Since we have an algorithm that operate®im log, n) (merge sort), this bound is tight.

Adversary Arguments

CS 385 Analysis of Algorithms Spring 2011

Another approach to finding lower bounds is #versary argumentThis method depends on a
“adversary” that makes the algorithm work the hardest bystd)g the input.

For example, when playing a guessing game to determine aermbwveen 1 and using yes/no
guestions €.g, “is the number less than?”), the adversary puts the number in the larger of the
two subsets generated by last question. (Yes, it cheats.)

The text also provides an adversary argument to show the loatend on the number of compar-
isons needed to perform a merge of two sorteglement lists into a singlen-element list (as in
merge sort).

Problem Reduction

A key idea in the analysis of algorithms psoblem reduction If we can come up with a way to
convert a problem we wish to solve to an instance of a diffigpesblem to which we already have
a solution, this produces a solution to the original problem

Suppose you wrote a program solving some problen few days later, you find out a program
needs to be written to solve a similar probléim To avoid writing too much new code, you might
try to come up with a way to solvB using your implementation of.

So given your input to problem®, you would need to have a procedure to transform this ingat in
corresponding input to an instance of probldmThen solve the instance of probletr{which you
already knew how to do). Then you need to transform the owtput back to the corresponding
solution toB.

As a very simple example, suppose you have written a proeddudtraw an ellipse.
draw el | i pse(doubl e horiz, double vert, double x, double y)

This procedure deals with trigonometry and works at a lovellevith a graphics library. But it
works.

If you are later asked to write a procedure to draw a circlepefolly you would quickly realize
that you could make use of your solution to the problem of dngvan ellipse.

draw circl e(doubl e radi us, double x, double y) {
draw el | i pse(2*radi us, 2*radius, X, Yy);

}

So we havdransformedor reducedthe problem of drawing a circle to the problem of drawing an
ellipse. We can say thatr aw.ci r cl e is “not more difficult than”, or “can be transformed in
polynomial time” todr aw.el | i pse.

For a somewhat more interesting example, suppose you aged &skolve the “pairing problem”.
You are given tov-element arraysi1l and A2. Your task is to rearrange the values4f such that
the smalled value irl2 is paired with the smallest value il. The second smallest M2 is paired
with the second smallest id1, and so one. Only values af2 are rearranged41 is unchanged.

4

CS 385 Analysis of Algorithms Spring 2011

So for the input arrays

Al 23 5 57 45
A2 150 175 100 120

the output would be

Al 23 5 57 45
A2 120 100 175 150

We aren’t concerned about the details of a solution, lets assume we have a solution to this
problem. But now, you are asked to solve a different probleai®.ohe we know well: sorting an
array A containingn values.

How can we make use of the solution to the pairing problem lweshe sorting problem?

We can transform the sorting problem into an instance of theng problem by using the input
array A from the sorting problem as arra§2 in the pairing problem, and creating an already-
sorted array (probably just containing the value®, - - -, n) and using that agdl1. Application of
the pairing problem’s solution will result in the sorting 42, which is exactly what we wanted.

What is the total cost? It®(n+T'(n) + 1) - where the first. is the time it takes to transform from
the sorting problem to the pairing problem (the constructbAl), 7'(n) is the cost of computing
the solution to the pairing problem, athda constant) is the cost of transforming back to a solution
of the sorting problem (which in this case is trivial).

A problem reduction can be used to show a lower bound.

e If problem A is at least as hard as problem B, then a lower bound foB is also a lower
bound forA.

e Hence, we wish to find a proble with a known lower bound that can be reduced to the
problemA.

Think about this for a minute and it will make sense: if we knibxat any solution to a problem
has to have some minimum cost (the lower bound) and we shawdh@e other problem is at least
as hard as that problem, that other problem shares the lawedof the first.

For example, suppose we wish to find a lower bound for the prolbf finding the minimum
spanning tree of a set of points in the plane. This problerawknas the Euclidean MST problem,
is defined as follows: given points in the plane, construct a tree of minimum total lengitiose
vertices are the given points.

The problem with the known lower bound we’ll use is the elemgiqueness probleni)(n log n),
tight).

So our task is to reduce the element uniqueness problem tostéance of the Euclidean MST
problem. We proceed as follows:

CS 385 Analysis of Algorithms Spring 2011

e If our input to the element uniqueness problem is a set of sy, -, - - -, z,,, We can
transform these to a set of points in the plane by attachingcaoydinate of O to each:

(1:17 0)7 (1}2, O)7 Ty (.I'n, O)
¢ If we then solve the Euclidean MST problem on this set of inpuibtain a spanning trég.

e From this, we can obtain a solution to the original elememnueness problem by checking
for a O-length edge.

So we can deduce a lower bound(¥(fn log n) for the Euclidean MST problem.

Tractable Problems, P and N P

A problem is said to b&ractableif there exists a polynomial-timeX(p(n)) wherep(n) is a poly-
nomial of the input sizex) algorithm to solve it.

A problem for which no such algorithm exists is callatractable

When attempting to determine the tractability of a probldme,answer may be:

e Yes, itis tractable. This is shown by producing a polynortiiale algorithm.

e No, itis not tractable. This is done by proof that no algarithxists or that any algorithm
must take exponential time.

e The answer is unknown.

Before we continue, we make a distinction between two prolilgrmas: optimization problems
and decision problems.

In an optimization problem, we look to find a solution that maixes or minimizes some objective
function. For a decision problem, we seek the answer to agegiestion.

Many problems have both decision and optimization versions example, the traveling salesman
problem can be stated either way:

e optimization: find a Hamiltonian cycle of minimum length.

e decision: find Hamiltonian cycle of length m.

Decision problems are more convenient for formal invesigaof their complexity and our dis-
cussion that follows will assume decision problems.

Pand NP

We define clas$ as the class of decision problems that are solvabie(pi(n)) time, wherep(n)
is a polynomial of problem’s input size

CS 385 Analysis of Algorithms Spring 2011

Many of the problems we have seen fall into clagsbut do all decision problems fall into this
class?

The answer is no. Some problems aredecidable such as the famousalting problem The
problem: given a computer program and an input to it, deteemihether the program will halt on
that input or continue working indefinitely on it.

We can prove by contradicion that this problem is undeciglabl

Suppose thatl is an algorithm that solves the halting problem. More fotyndbr any programP
and input/, A(P, I) produces a 1 i halts when executed with inpiitand O if it does not.

Now, take a progran® and use the program as its own input. We’ll use the algorithimconstruct
another program such that)(P) halts if A(P, P) = 0 (P does not halt on inpuP) but does not
halt (goes into a loop) ifA(P, P) = 1 (P halts on inputP).

And finally, we apply@ to itself: Q(Q) halts if A(Q, Q) = 0 (program(does not halt o)) and
does not halt ifA(Q, Q) = 1 (program@ halts onQ).

Given our construction of the prografh neither of these outcomes is possible, so no such algo-
rithm A can exist.

There is also a set of problems for which it has been shownk® éaponential time to obtain a
solution (with a provable lower bound).

But a larger and important set of problems haveknownpolynomial-time solution, but there is
no proof that no such solution exists.

We have seen some of these problems:

e Hamiltonian circuit

Traveling salesman

Knapsack problem

Partition problem

Bin packing

Graph coloring
For some of these, while there is no known polynomial-timieitsan, we can easily check if a
given candidate solution is valid. This leads us to..

Class N P (nondeterministic polynomial) is the class of decisionlgeons whose proposed so-
lutions can be verified in polynomial timege., are solvable by aondeterministic polynomial
algorithm

A nondeterministic polynomial algorithm is an abstractqadure that:
1. generates a random string purported to solve the problem

7

CS 385 Analysis of Algorithms Spring 2011

2. checks whether this solution is correct in polynomialtim

By definition, it solves the problem if it is capable of genergtand verifying a solution on one of
its tries.

Many decision problems are iN P, including all of those that are iR.
The big open question in theoretical computer science igiven® = N P. What would it mean?
First, one more definition.

A decision problenmD is NP-completef it's as hard as any problem iN P, i.e.,

e Disin NP, and

e every problem inV P is polynomial-time reducible t®

The first requirement isn’t bad — just produce a nondetestimpolynomial algorithm. The sec-
ond, known as thé\P-Hard property, is pretty daunting. We're supposed to show thaty
problem inN P is polynomial-time reducible to this problem?

Of course, anyV P-complete problems are polynomially reducible to eachmt®it suffices to
show that we can reduce any one problem in the séf Bfcomplete problems to a problem to
show it isN P-complete.

Nonetheless, there are problems known ta\llé-complete.

Informally, an NV P-complete problem is one for which we have not yet found @fx°) algo-
rithms, and if we do find anO(n°) algorithm to solve it, we’ll then ge)(n°) solutions toall
problems inVP.

Figure 11.6 of Levitin shows the idea graphically.

The first problem shown to b& P-complete was th€NF-satisfiability problem Is a boolean
expression in its conjunctive normal form (CNF) satisfialbke, are there values of its variables
that makes it true?

For our purposes, we will just note that this problem isN#® by noting this nondeterministic
algorithm:
1. Guess truth assignment

2. Substitute the values into the CNF formula to see if it enids to true

A check can be done in linear time.
The deterministic solution requir@8 evaluations.

For example, consider the expression:

CS 385 Analysis of Algorithms Spring 2011

(A|=B|-C)&(A|B)&(=B|~D|E)&(=D|-E)
We would have to check each of the = 32 combinations of boolean values df B, C, D, and

E.

Other problems can be shown to b&P-complete by producing a reduction of CNF-Sat to that
problem. That s, if a problem can be used to solve CNF-Sapithielem is/N P-complete.

Some Famous N P-Complete Problems

e Thelndependent Set Problem
Input: An undirected grapty’ and a valuek.

Output: Yes ifG has an independent set of size at ldasAn independent set is a subset of
the vertices such that no pair of vertices has an edge betivean

An algorithm to solve this: Enumerate every possible suasdtcheck if it forms an inde-
pendent set. Keep track of the largest such subset.

In the worst case!V! subsets are searched.

This is the best known solution, but even for a problem wittvéQices and a computer that
can do 1 billion subsets per second, it would take 32 yearslte she problem!

What happens if we move up to 61 vertices?

e TheHamiltonian Cycle Problem
Input: An undirected, weighted gragh= (V, F).

Output: Yes ifG has a Hamiltonian cycle (a cycle that visits every vertexcdyance), no
otherwise.

An algorithm to solve this: Enumerate every possible cy€ledices and check if the edges
that connect it exist.

In the worst case, we need to chetk! paths.

This is the best known solution, but again for a relativelyamroblem — 20 vertices, and a
computer that could do 1 billion permutations per secondiragie’re looking at 32 years!

What happens if we move up to 21 vertices?

S0, DoesP = NP
Sure, if P = 0 or N = 1. But that’s not helpful.

Most theoretical computer scientists believe that no patyial time solutions exist for the class
of N P-complete problems.

CS 385 Analysis of Algorithms Spring 2011

There are hundreds df P-complete problems known, and over 30+ years, no one hasifaun
polynomial time solution to any of them.

Yet, it remains a central open question in computing.

Dealing with N P-Hard Problems

Realistically, N P-hard problems are “solved” by approximations or stoclkaagiproaches. See
Chapter 12!

10

