Computer Science 385

Analysis of Algorithms
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Heaps
Before we discuss heaps and priority queues, recall thexmitptree terminology and properties:

e A full binary tree of height has all leaves on leveil.

A complete binary tree of height: is obtained from a full binary tree of heightwith O or
more (but not all) of the rightmost leaves at lealemoved.

We sayT’ is balanced if it has the minimum possible height for its number of nodes.

Lemma: If T is a binary tree, then at levé| T has< 2* nodes.

Theorem: If T has height, thenn = num nodes irt” < 2"+1 — 1. Equivalently, ifT hasn
nodes, them — 1 > h > log(n + 1) — 1.

Array representations of trees

Our representation of the tree:

actually looks like this:

CS 385 Analysis of Algorithms Spring 2011

put ;

(Ll T Telele] [(Tle[y [TTalele]
FAT AN ii
(Llelel [Tslele] [Telele]

|Z =null reference

=reference to unique EMPTY tree |Z|Z
4

That's a lot of extra references to parents and children tamanpty nodes. So to store 10 actual
data values, we need space for 40 references plus the 4 thatupahe empty tree instances.

The following array contains exactly the same information:

o 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14
alo]2]s]7]wo]1]3] Ts

The arraydat a[0. . n- 1], holds the values to be stored in the tree. It does not coetqhcit
references to the left or right subtrees or to parents.

Instead the children of nodeare stored in position: i + 1 and2 x ¢ + 2, and therefore the parent
of a nodej, may be found atj — 1)/2

This lets us save space for links, but it is possible thaktiea significant waste of storage:

Storing a tree of height requires an array of lengi"*! — 1 (1), even if the tree only ha®(n)
elements. So this representation is very expensive if yoae Bdong, skinny tree. However, it is
very efficient for holding full or complete trees. For our exale, we need 15 references to hold a
tree of 10 items, compared to 40 for the fully constructechbjriree.

Heapsand Priority Queues

First, we’ll consider a structure that seems somewhat likerdered structure and somewhat like
a queue:

A priority queueis a structure where the contents are comparable elemeahth@elements with
“small” (or “large”) values are removed before elementdwiarger” (or “smaller”) values.

Waiting at a restaurant can be a priority queue — you get @it people who are regular cus-
tomers or who give a tip to the host or hostess may move aheasliah line.

CS 385 Analysis of Algorithms Spring 2011

Same idea when airports are backed up. Planes will get irfdingneir turn on the runway, but
scheduling concerns or fuel issues or whatever else mag ¢giaand control to give a plane which
“gotin line” later a higher priority and move them up.

An operating system may be scheduling processes that angetiog to use the CPU in a multi-
programmed system. The next process may be selected basiael lnighest prioirty process that
is seeking a turn on the CPU.

Much like stacks and traditional queues, we only need to defsingleadd andr enove method.
We can add any element at any time, but we can only ever examimenove the smallest item.

One can implement a priority queue sort of like a regular gubeut where either you work harder
to insert or to remove an elemenni(, store in priority order — maintain a sorted internal stoetu
or search each time to remove lowest priority elements).

We can implement a priority queue using an arrayhor ayLi st or some sort of linked list, but
in any case, at least one atld or r enove will be a linear time operation. (Which one &(n)
depends on which scheme is adopted!)

But... we can do better. Using the observation that we dorétlrte keep the entire structure
ordered — at any time we only need quick access to the smalessent — we can provide a more
efficient implementation using a structure calledhesp.

Recall that a complete binary tree is one in which every levélil except possibly the bottom
level and that level has all leaves in the leftmost positigN®te that this is more restrictive than a
balanced tree.)

Definition: A Min-Heap H is a complete binary tree such that

1. H is empty, or

2. (a) The root value is the smallest valuefinand
(b) The left and right subtrees &f are also heaps

This is equivalent to saying th&f i] <= H 2*i +1],andHi] <= H 2*i +2] for all ap-
propriate values of in the array representation of trees.

We could just as well implement iax-Heap — just reverse all of our comparisons. The text in
fact does talk about max heaps.

In either case, it often makes sense to use the @rayyLi st representation of binary trees
here, since the tree is also guaranteed to be complete, iowfilenever be empty slots wasting
space.

Another way of looking at Min-Heap is that any path from a leathe root is in non-ascending
order.

CS 385 Analysis of Algorithms Spring 2011

Note that there are lots of possible Min-Heaps that wouldtaianthe same set of values. At
each node, the subtrees are interchangeable (other theswhnich have different heights, strictly
speaking).

In a Min-heap, we know that the smallest value is at the réetsecond smallest is a child of the
root, the third smallest is a child of the first or second seshjland so on.

This turns out to be exactly what is needed to implement aipriqueue.

We need to be able to maintain a Min-Heap, and when elementsdaled or the smallest value is
removed, we want to “re-heapify” the structure as efficieat possible.

Inserting into a Heap

1. Place number to be inserted at the next free position.
2. “Percolate” it up to correct position.

Deleting the Root from a Heap

1. Save value in root element for return (it's the smallegt)on
2. Move last element to root

3. Push down (or “sift”) the element now in the root positiagnwas formerly the last
element) to its correct position by repeatedly swappingiththe smaller of its two
children.

Notice how these heap operations implement a priority queue

When you add a new element in a priority queue, copy it into th fiee position of the heap and
sift it up into its proper position.

When you remove the next element from the priority queue, ventioe element from the root of
heap (first elt, since it has lowest number for priority), mdke last element up to the first slot,
and then sift it down.

If we implement a priority queue using a heap and store oup lnrearrayAr r ayLi st format,
theadd andr enpove operations can both be implemented efficiently.

4

CS 385 Analysis of Algorithms Spring 2011

Removing an element involves getting the smallest, remoitifpm the start of the array, and
“heapifying” the remaining values. As we did in the example,remove the first value, move up
the last value to that first position, and “sift” it down to didgposition.

Theadd operation is pretty straightforward. Just put it at the ehthe array and “percolate” it
up to restore the heap condition.

How expensive are these “percolate up” and “push down rgo¢iations?

Each is©(logn), as we can, at worst, traverse the height of the tree. Siredréle is always
complete, we know its height is always at mbgin. This is much better than storing the priority
gueue as regular queue and inserting new elements intatitgoosition in the queue and removing
them from the front.

Sorting with a Heap (HeapSort)

The priority queue suggests an approach to sorting datae Haven values to sort, we can add
them all to the priority queue, then remove them all, and tteeye out in order. We're done.

What is the cost of this? If we use the naive priority queue eng@ntations (completely sorted
or completely unsorted internal data, making either adeorave©(n) and the othe®(1)), we
need, at some point, to do@(n) operation for each of. elements, making an overall sorting
procedure oB(n?). That's not very exciting — we had that with a bubble sort.

But what about using the heap-based priority queues?

We can build a heap from a collection of objects by adding tbemafter the other. Each takes at
mostO(logn) to insert and “percolate up” for a total time 6f(n logn) to “heapify” a collection

of numbers. That's actually the cost of the entire sortingcpdure for merge sort and quicksort,
and here, we've only achieved a heap, not a sorted struduteve continue..

Once the heap is established, we remove elements one at,gotittiag smallest at end, second
smallest next to end, etc. This is agaisteps, each of which is at most &tlog n) operation.

So we have an overall cost 6f(n log n), just like our other good sorting procedures.

We can actually do a little better on the “heapify” part. Caolesithis example, which | will draw
as a tree, but we should remember that it will really just elliban array or adr r ayLi st .

We want to heapify. Note that we already have 4 heaps — thedeav

CS 385 Analysis of Algorithms Spring 2011

(=)
(22) (29)
S@EE
We can make this 2 heaps by “sifting down” the two level 1 nodes

Then finally, we sift down the root to get a single heap:

How expensive was this operation, really?

We only needed to do the “push down root” operation on abdfitiithe elements. But that's still
O(n) operations, each costirt@(logn).

The key is that we only perform “push down root” on the firstflwdithe elements of the array.

That is, no “push down root” operations are needed corretipgrio leaves of the tree (corre-
sponding to; of the elements).

For those elements sitting just above the leavesf(the elements), we only go through the loop
once (and thus we make only two comparisons of priorities).

For those in the next layeg (of the elements) we only go through the loop twice (4 compas,
and so on.

Thus we make
2% () +4% (2) 4 6% (50) -+ 2¢ (log) x (1)

total comparisons.

Since2!°s™ = n, we can rewrite the last term to fit in nicely:

CS 385 Analysis of Algorithms Spring 2011

n

8

n
9logn

2*(%))46k (nx) 4 - -+ 2% (log) * (

+ 4 (T

)

We can factor out the, multiply in the 2 (to reduce each denominator by 2) and pugthinto a
more suggestive format:

1 2 3 logn
A O TR AT T

The sum inside the parentheses can be rewritten as

This is clearly bounded above by the infinite sum,

i=1 2i
Let’s see if we can evaluate this infinite sum:

S S
248" 16

We can rewrite this in a triangular form to be able to use somksto get the sum:

1+»1+»1+»1 + = 1
2 4 8 16 N
L S
4 8 16 2
1+ 1 N 1
8 1 4
1 N 1
16 8
1
16
2
Thus 1 2 3 1
Og?’L
n*(§+?+¥+---+2logn)<=2n

and hence the time to heapify an arrayfor ayLi st , in place, iSO(n).

7

CS 385 Analysis of Algorithms Spring 2011

The second phase, removing each successive elemenggtiiteés: removes, each of which will
involve a®(logn) heapify.

We can, however, do this in place in our arraydor ayLi st , by swapping each element removed
from the heap into the last position in the heap and calliegtbap one item smaller at each step.

()
() (1)
ONONONO

And then we do a sift down of the root (which just came up fromltst position):

()
() (%)
& @ ® @

Then the next item (19) comes out of the heap by swapping ittt position, and we sift down
the 25:

ONONONOG

And the process continues until there is no more heap.

The entire process of extracting elements in sorted orde(ridog n).
Therefore, the total time I®(nlogn).

Plus, there’s no extra space needed!

Note that using a Min-Heap, we end up with the array sortecestednding order. If we want to
sort in ascending order, we will need a Max-Heap.

So we have a new efficient sorting procedure to add to our aksen

