Computer Science 385

Analysis of Algorithms
SIENAcollege siena College

Computer Science Sprlng 2011

Topic Notes: Sorting by Counting

We have considered several sorting algorithms to this pbirible sort, selection sort, merge sort,
insertion sort, quicksort, tree sort and heapsort. We willoriefly consider a couple more.

Comparison Counting Sort

Consider this approach to the sorting problem: for each atémmethe collection to be sorted,
count the number of elements that are smaller than that eler®&ce we have all of these counts,
the count corresponding to each element is its positionarstrted array.

conpari son_counting_sort (Al 0..n-1])
/1 S[0..n-1] is the sorted array
/'l counts[0..n-1] is the array of counts of smaller elenents for each
counts[0..n-1] =0
for i = 0ton-2
for j =i+41 to n-1
if Ali] < A[j] counts[j]++
el se counts[i]++

for i =0to n-1
S[count[i]] = Ai]
return S

This algorithm is clearly©(n?) and even use®(n) of extra space, so it does not seem to be a
leading candidate for use before our other algorithms. dba does work well, however, in some
cases...

Distribution Counting Sort

Suppose the set of elements we are to sort are known to comdrom a small set of values.
Perhaps just As and B’s. If we count the total number of Ashie tnput (call itn4), then fill in
the firstn 4, elements of the sorted array with A's, and the rest with B’syeieorted the input!

The generalization of this idea is knowndstribution counting, where we have a known range of
values from a lower bound to an upper bound in the input array.

di stribution_counting(A[O..n-1], | ower, upper)
[l D[O..u-1] is the array of distributions/frequencies
/1 S[0..n-1] is the sorted array

CS 385 Analysis of Algorithms Spring 2011

DO..u-1] =0
for i = 0ton-1

DIA[i]-1]++ // increment frequency of elt at Ali]
for j =1 to u-lI

Dj] =Dj-1] + Oj] [/ convert to distribution
for i = n-1to O

i = Al -

S[Oj] - 1] = Ali]

ojl--

return S

What about the efficiency class of this algorithm? We have stendoops or recursive calls! This
is clearly linear. So it’s easily the most efficient sortingaithm we have encountered. But...it
has the very significant restriction that we need extra spemgortional to the range of values. So
if we do have a limited range of valyes, this is a very goodanpti

