
Computer Science 381
Programming Unix in C
The College of Saint Rose

Winter Immersion 2016

Lab 9: Data Structures
Due: Monday, January 11, 2016

This lab is a follow on to the previous two. You will write two more C data structures in the

object-oriented style.

Unix Utilities

Before we get into this lab’s C programming tasks, we take a look at some of the most useful Unix

utilities. The extensive set of simple but useful utilities, and the ability to string them together with

pipes and scripts are the real power of a Unix environment. Experienced Unix users faced with a

task often find that they can quickly put together a script, or even a single command that performs

the task, avoiding the need to find (or worse yet, write) a single program to perform it. This is

especially true when the task involves processing text files or files with lots of numbers.

Back in the first lab, you looked into the functionality of a list of Unix commands. We will look

more closely at some of those, plus a few more, in this lab and in the next.

Pipes

Input and output redirection, which you’ve already been doing this semester, is one of the great

sources of the power of the Unix command line. You have seen that you can have a program

that is expecting input from the keyboard (standard I/O functions like getchar and scanf

that read from stdin) get its input instead from the contents of a file. For example, in the

inputadder program from earlier this semester, you could have a set of numbers to be added in

a file mynumbers.txt and without changing your program to know that the input is going to be

in a file rather than be typed in at its prompts by issuing the command:

./inputadder < mynumbers.txt

You have been using output redirection all semester, at least for the “output capture” questions in

the labs.

ls -laR > ls.out

Now if you wanted to take the output of one program and use it as the input to another, you could

use a temporary file as a way to store that output from the first program and provide it as input to

the second. For example, if you have one program that generates a list of numbers (for whatever

purpose), and you want to add those numbers up with your inputadder program:

CSC 381 Programming Unix in C Winter Immersion 2016

./gennumbers > tempfile

./inputadder < tempfile

While this would work, it has some problems. We need to pick a name for a file that doesn’t already

exist. We need space in the filesystem to store the file. We will want to remember to remove the

file afterward.

Unix provides the ability to attach the output of one program directly to the input of another using

a pipe. For the example above, your command line would be:

./gennumbers | ./inputadder

In addition to avoiding the need for the temporary file, this can be done much more efficiently

behind the scenes. The first program can still be running while the second starts its work.

There’s no reason to limit this to just two commands in a pipeline. For example, suppose we have

an input file namelist.txt that contains an unsorted list of names, one per line. We want to

consider only those names that contain the word “john” anywhere in the name, and we want to

print out the last three alphabetically from that group. This pipelined command line would do it:

grep -i john namelist.txt | sort | tail -3

Question 1:
Explain what’s happening in each component of the above command pipeline and how they

combine to work as described. (3 points)

For the following lab questions, describe the effect of the given command pipeline.

Question 2:
ls -1 | wc -l (1 point) Note: the parameter to ls is the number ‘1’ while the parameter

to wc is the letter ‘l’.

Question 3:
head -10 myfile | tail -1 (1 point) The parameter to tail is the number ’1’.

We assume that the file myfile contains at least 10 lines.

For the following lab questions, give a single Unix command pipeline that would accomplish the

task described.

Question 4:

Print the number of files in the current directory. (1 point)

Question 5:
List all of the files in a directory that were last modified on Halloween. (2 points) Hint: start

with ls -la.

2

CSC 381 Programming Unix in C Winter Immersion 2016

Question 6:
Given a file with a list of several hundred words, one per line, print the single word that

occurs between lines 100 and 200 of the file which is last alphabetically. (2 points)

Programming Assignment: A Queue of Ratios

Create a queue structure and corresponding functions to operate on queues in C that holds ratio

values. You may use the ratio structure from the ratios examples. Again, include an ap-

propriate header file, implementation file and a file containing a main function that tests your

implementation. Also include a Makefile that compiles your queue implementation and your

testing code.

If you have a working queue of int values from the previous lab, you will be able to do this

one by changing the field that stores the value in each of your queue elements to store a “ratio

*” instead of an int, and the appropriate parameters and return values of the queue functions

to use “ratio *” as needed. Be sure that you are using pointers to ratio not just ratio

throughout, because C will not let us use assignment statments on structures, but will with pointers

to structures. Your queue code should never allocate or free any ratio, just manage ratios that

are allocated and freed by whoever calls your queue’s functions.

Programming Assignment: A Priority Queue of Ratios

Next, create a priority queue structure and corresponding functions to operate on priority queues

in C that holds ratio values. Your priority queue should remove the smallest ratio when an item

is removed. Again, include an appropriate header file, implementation file and a file containing

a main function that tests your implementation. Also include a Makefile that compiles your

priority queue implementation and your testing code.

Some thoughts about this program:

• Your priority queue should be based on a linked list again. You might find it useful to use

your queue program from the previous part as a starting point.

• There are many ways to implement a priority queue. When using a singly-linked list imple-

mentation, we can either take care of the “priority” part when adding to the structure or when

removing. If we do a simple add, then the remove would require a search for the smallest

value to be removed from the list and returned. If we do the work in add, that is, we make

sure the list is sorted after every add operation, the remove becomes simple. I recommend

the latter.

• Assuming you are taking my advice, the only significant change will be in the add (enqueue)

function. Think of it in cases, and handle each separately. The following cases are likely to

arise:

1. You are adding to an empty priority queue. Great - we just add at the head of the queue.

3

CSC 381 Programming Unix in C Winter Immersion 2016

2. You are adding a value smaller than any in the queue. OK, so not too bad. We make a

new node with this new value become the new head, and it’s next is the old head.

3. You are adding a value that needs to end up somewhere in the middle. This entails

a search. Once you find the node that your new value should follow, it’s a matter of

hooking up the pointers to that node to your new one, and your new one to that node’s

old successor.

4. You are adding a value that should be at the end of the queue. Depending on your

implementation, the case above might handle this, but be sure you’re checking that you

never run off the end of the list, else you will encounter the dreaded Segmentation

fault.

• Draw lots of pictures. Work through easier cases first. If you can’t add the first element to

the structure, you certainly can’t add the second.

• Remember your debugging techniques. Insert debugging printouts to figure out where your

program is failing. Use fprintf(stderr,...) to ensure you don’t get confused by

buffered output not appearing before the operating system kills your process for causing a

segmentation fault. Remember gdb also might be able to help you track down a bug quickly.

Summary

These programs and their Makefiles are worth a combined 40 points as broken down below.

Reference solutions to all programs are available on mogul in /home/cs381/labs/ooc2.

Submission

Please submit all required files as email attachments to terescoj@strose.edu by Monday, January

11, 2016. Be sure to check that you have used the correct file names and that your submission

matches all of the submission guidelines listed on the course home page. In order to email your

files, you will need to transfer them from mogul to the computer from which you wish to send the

email. There are a number of options, including the sftp command from the Mac command line.

Grading

Grading Breakdown

Lab questions 10 points

ratio queue correctness 12 points

ratio priortity queue correctness 12 points

Program error checking 3 points

Program memory management 4 points

Program documentation 5 points

Program style 3 points

Makefiles 1 point

4

