
Computer Science 381
Programming Unix in C
The College of Saint Rose
Winter Immersion 2014

Lab 8: “Object-Oriented” C
Recommended Due Date: Monday, January 13, 2014

In this lab, you will see how to develop a data structure in C using a somewhat “object-oriented”
methodology, despite the lack of language features to support object orientation.

Previous Example Revisited

One of the last lab’s examples demonstrates this: theratio.h andratio.c files.

The structure definition and the four functions provide similar capabilities to a class in a language
like Java. The fields of the structure are like instance variables of a Java class (though they would
be more likepublic rather than the preferredprotected or private instance variables).
The create ratio function plays the role of a constructor. The other functions are like the
methods of a class.

Notice, however, that we have no mechanism for real data hiding. Anyone with access to a pointer
to aratio can access and modify the data fields. In fact, with the ability to use casts, we could
treat the memory that was allocated as aratio in completely unexpected (and likely incorrect)
ways.

Also, all calls to functions that operate on aratio must take theratio as a parameter. So what
would be something like

rat.print_ratio();

in an object-oriented language would be

print_ratio(rat);

here. This is what actually happens behind the scenes with real objects.

Practice Program:
Add a functionprint ratio mixed to ratio.c and a function prototype toratio.h
that will print a ratio as a mixed number. For example, if thenumerator field is 8 and the
denominator field is 3, it would print as “2 2/3” instead of “8/3”. (5 points)

A More Complex Example



CSC 381 Programming Unix in C Winter Immersion 2014

Consider this example, which is an implementation of a singly-linked list structure that holdsint
values.

See Example:
/home/cs381/examples/sll

Study this code to make sure you know how it works.

Lab Question 1:
Briefly explain why it is important to provide separate.h and.c files for an implementation
of a data structure such as this. (4 points)

Lab Question 2:
Draw a memory diagram showing the state of the program’s memory just before it executes
theprintf statement at line 68 ofslltest.c. Differentiate between stack variables (the
contents of parameters and/or local variables of functionsin execution) and heap variables
(everything allocated withmalloc). (6 points)

Programming Assignment: A C Q

Develop a queue structure and corresponding functions to operate on queues in C that holdint
values. Include an approrpriate header file, implementation file, and a separate file with amain
function that tests your implementation. Also include aMakefile that compiles your queue
implementation and your testing code.

Recall that a queue is a first-in, first-out structure that should be able to be constructed, enqueue
elements, dequeue elements, and answer whether it currently contains any element. You should
also be able to deallocate the queue.

This program and itsMakefile are worth 25 points.

The executable for the reference solution to this program isavailable on mogul in/home/cs-
381/labs/ooc.

Submission

Please submit all required files as email attachments toterescoj@strose.edu. You are recommended
to do so by Monday, January 13, 2014. Be sure to check that you have used the correct file names
and that your submission matches all of the submission guidelines listed on the course home page.

Grading

2



CSC 381 Programming Unix in C Winter Immersion 2014

Grading Breakdown

print ratio mixed function 5 points
Lab questions 10 points

int queue correctness 15 points
int queue error checking 2 points

int queue memory management2 points
int queue documentation 3 points

int queue style 2 points
Makefile for queue program 1 point

3


