Computer Science 381
Programming Unix in C
The College of Saint Rose

Fall 2013

Lab 7: Structures in C
Due: 11:59 PM, Thursday, October 24, 2013

In this week’s lab you will learn about theake utility, then about C structures, a simple mecha-
nism that allows heterogeneous data fields to be groupea isitagle entity.

Using themake Utility

Any non-trivial software development involves many itéyas of editing, compiling, linking, and
running your programs. The code will be spread across nheiliiles. The most common mecha-
nism for managing this process when programming in C in a @nsironment is therak e utility.
The actions ofrake are specified by rules inldakef i | e.

Copy the following example to your account:

See Example:
/ hone/ cs381/ exanpl es/ make- exanpl e

You should find a small C program that demonstrates the useuttiphe source files and a
Makef il e. Compile the program by issuing timake command. Capture the output of the
command immake. out :

make > nake. out

< Output Capture:
| make. out for 2 point(s)

Now, look at the contents afake. out , then at the rules and the description in NMekef i | e.

? Lab Question 1:

Briefly describe howrak e uses the rules in theakef i | e to produce the executaliei n.

Be sure to include the series of targets, their dependeratidghe commands used to satisfy
those dependencies for each target. (5 points)

From this point forward, you should write lakef i | e for each of your programs. You are
strongly encouraged to do this when you first start each progather than at the end - it is
intended to be a tool to speed your development processgsbthat way!

Programs in Multiple Files

CSC 381 Programming Unix in C Fall 2013

Themake example above also demonstrated a very simple case of C amlg feparated into
multiple . ¢ (implementation) and/arh (header) files.

We next consider an unnecessarily complicated C prograinctimaputes the greatest common
denominator of two integer values that further illustrdtes idea.

See Example:
/ home/ cs381/ exanpl es/ gcd

There are lots of things to notice here:

o We have four files:

— gcd. c: the implementation of thgcd function
— gcd. h: a header file with a prototype for tlgged function

— gcdnmai n. ¢: a main program that determines the input numbers, comphugeSCD,
and prints the answer, and

— Makefi | e: a “make file” that gives a set of rules for compiling thesesfiieto the
executable programcdmnai n.

When executing, functions from bogftdnmai n. ¢ (mai n) andgcd. ¢ (gcd) will be used.
Both of these are included in our executable gitdmai n.

e Start withgcd. c:

— This is a very simple recursive function to compute the gsglatommon denominator
using the Euclidean Algorithm.

— There is norai n function here, so if we try to compile this by itself as we didhw
our single-file C programs, we will get an error.

2 Lab Question 2:
What happens when you try this? Give the command you used a&ndrtar,
message that is produced. (2 points)

— Instead, we havgcc use “compile only” mode to generate ahject filegcd. o from
gcd. c:

gcc -c ged.c

gcd. o is a compiled version gjcd. ¢, but it cannot be executed.

C (and many other languages) require a two steps for soud®etode converted into
an executable. The first step compiles source code into tobjpele, the second takes
a collection of object code files aritiks together the references in those files into an
executable file. (There’s much more to discuss here, bustasld suffice for now.)

e Nextup,gcd. h:

CSC 381 Programming Unix in C Fall 2013

— Much like st di 0. h tells the compiler what it needs to know abguti nt f (among
other things), we havgcd. h to tell other C functions what they need to know about
the functiongcd. Namely, that it's a function that takes twat s as parameters and
returns an nt .

— Any C file that contains a function that cai€ d should#i ncl ude "gcd. h".
e The driver programgcdmai n. c:

— We include several header files to tell the compiler what #&dseto know about C
library functions (and ougcd function) that are called by functions defined here.

— This is where our one and ontyai n function is defined.

— This file includes arai n function, so we might think we could compile it to an ex-
ecutable as we did with the single-file C programs we've usefdus If we try, we’ll
find that it doesn’t know how to find thgcd function.

2 Lab Question 3:
| Try this. Give the command you used and the error messageego2 points)

Again, we’ll have to compile but not link:
gcc -c gcdnmain.c

This produces the object filgcdmai n. 0. We need tdink together our two object
files, which, together, have the function definitions we need

gcc -0 gcdmain gcdmain. o gcd. o
This gives uggcdmai n, which we can run.

e The Makef i | e contains rules to generate a sequence of caltycto that will correctly
compile and link theggcdmai n executable.

? Lab Question 4:
Draw a memory diagram for this program for the case where tinebers entered are 9 apd
24. Your diagram should show the state of memory (includihgapies of the parametefs
to eachgcd recursive call that exist on the call stack) at the point wehee t et urn b”
statement is about to be executed during the base case eidision. (7 points)

Cstructs

In addition to the readings from Chapter 6 of K&R, the followiis@mewnhat silly) example should
help you understand structures in C.

See Example:
/ home/ cs381/ exanpl es/ rati os

CSC 381 Programming Unix in C Fall 2013

Again, we have a number of C source code) and header.(h) files. We will consider each in
turn.

The filesgcd. h andgcd. c are the same as the ones you saw earlier in this lab.

The filesrati 0. h andr ati 0. ¢ define a structure and a number of functions that have to do
with storing a ratio of two integer values.

Inrati o. h, we have the definition of the structure that will hold ouiost

typedef struct ratio {
i nt numerat or;
i nt denom nat or;

} ratio;

There are two important things happening here. First, attre called astruct rati o is
defined. It consists of twont values:nuner at or anddenom nat or. In many ways, these
are like the instance variables of a Java class, but themeoaaecess protectionsd., they are not
“private” or “protected”, but the equivalent of “public”Second, we are giving another (shorter)
name to oust ruct rati o: simplyrati o. This is being accomplished by thepedef . In
general, & ypedef can define a new name for any type:

t ypedef x vy;

would define a new type namguadwhich is just another name for an already-existing type rtame
X.

In our case, theé ypedef just means we can refer to variables and parameters ofstiypect
rati oassimplyrati o.

The rest of the contents ofat i 0. h defines function prototypes for the functions that will be
defined inr at i 0. ¢ that can be called from elsewhere.

As a whole, the information inat i 0. h tells a C source file that would like to work with these
r at i o structures everything it needs to know to compile.

In rati o. c, the four functions that operate aorat i os are defined:create_rati o con-
structs a new at i 0 given a numerator and a denominatadd_r at i os takes two existing
rat i os, adds them and constructs and returns a naw o that represents their sum in low-
est termsy educe_r at i o takes an existingat i o and reduces it to lowest terms, and finally,
print _rati otakes an existingat i o and prints it in a reasonably nice format.

There are a number of things to consider in these functiohs.fifst two functions return a value
of typerati o *. This indicates gointer to ar at i o structure. The last three functions take
one or two parameters of this same typat i 0 *.

Perhaps the most important thing to note here is how we aldba memory for these structures.
In bothcr eat e rati o andadd_r ati os, we see the line:

4

CSC 381 Programming Unix in C Fall 2013

ratio r = (ratio *)mall oc(sizeof (ratio));

You have already seeml | oc, but this usage is C’s way of doing the equivalent of a Jeeav
operation. This line:

1. declares a variable of typerati o *
2. initializesr to the return of the functiomal | oc

3. mal | oc reserves a chunk of memory of the requested number of byteeturns a pointer
to the start of the memory segment

4. thesi zeof operator determines the number of bytes in the type to whimpglies — in this
caser at i 0, which should be a total of 8 bytes

5. sincemal | oc does notreturnnati o * (itreturnsavoi d *, which is a generic pointer),
we need the cast to tell the compiler that we will be treathg hewly-allocated chunk of
memory asaati o *

Note also the way we refer to the fields of that i o structure when the variable contains a
pointer to ar at i o:

r->nunerat or = nunerator;
This is functionally the equivalent of the Java statement:
r.numerator = numerator;

However, since C allows a variable referring to a structorbd either a pointer or the structure
itself, there are two different notations. If we had a vaeabof typer at i o rather tharrati o

* we would use the “dot” notation like we use in Java. But heregeswe have pointers, we use
the “arrow” notation.

Recall the very important difference between C and Java thardically allocated memory in C
is not garbage collected. That means that every chunk of memorytegowithmal | oc must be
returned to the system for reuse by a call to the functioee. In our case, thesker ee calls are
made inr at i o_exanpl e. c. For each call tareate_rati o oradd._rati os, which each
contain a call taral | oc, there must be a corresponding calf toee.

This brings us to the file at i o_exanpl e. ¢, which is amai n function that makes use of the
rati o structure and functions to demonstrate the complexiti€s wiemory management.

Read over the commentsiirat i o_exanpl e. ¢ and see if you can understand how the memory
is being allocated and managed.

CSC 381 Programming Unix in C Fall 2013

? Lab Question 5:
Draw a series of memory diagrams showing the contents of mefboth stack variable
and the memory allocated in the heap) right beforerteeur n statement in each call {o
add_r at i os (so, 2 separate diagrams), and then right before #teur n statement at th
end ofmai n. (12 points)

Programming Assignment

Write a new driver program (C file with i n function)sumr at i os. c that reads in a series
of lines representing ratios from an input file and printsghe of those ratios in lowest terms at
the end.

e The program should take a single command-line parametahi$ithe name of the file that
contains the list of ratios.

e Properly formatted lines in the file should look like this,even andd arei nt values:
n/d
e Your program should stop reading input and print the finalltewhen it encounters an

incorrectly formatted line or the end of the file. (Hiftscanf 's return value is your friend.)

e You should use theati 0. c,rati o. h, gcd. c, andgcd. h files, unmodified, from the
example.

e Provide your owrsumr at i os. ¢ and a workingvakef i | e that will build your program
on mogul.

e Be sure to perform appropriate error checking including nmegul error reporting, and free
all memory your program allocates.

e Your program should compile with no warnings usonge’s - Val | flag.

The program is worth 20 points.

The executable for the reference solution to this prograavaslable on mogul if hone/ cs-
381/1 abs/ structs.

Submission

Please submit all required files as email attachmentsrescoj@strose.edoy 11:59 PM, Thurs-
day, October 24, 2013. Be sure to check that you have used trectéle names and that your
submission matches all of the submission guidelines listethe course home page.

Grading

CSC 381 Programming Unix in C Fall 2013

| Grading Breakdown |

Lab questions and output captures| 30 points
sumr at i 0s. ¢ correctness 10 points
sumr at i 0s. c error checking 2 points
sumr at i 0S. ¢ memory management 2 points
sumr at i 0s. ¢ documentation 3 points
sumr at i os. c style 2 points

Makef i | e for ratios program 1 point

