Computer Science 381
Programming Unix in C
The College of Saint Rose

Fall 2013

Lab 5: More Pointers and Arrays
Due: 11:59 PM, Thursday, October 3, 2013

In this week’s lab, you will gain more experience using asragd pointers in C.

Reference solutions to all programs are available on modutone/ cs381/ | abs/ poi nt er s2.

Arrays, Arrays, Arrays

Have a look at this example, which demonstrates some of tlys wa can declare, construct,
initialize, and otherwise use arrays in C.

See Example:
/ home/ cs381/ exanpl es/ arrays

The comments in this program describe its usage of the mgxiriant C features. Pay special
attention to the usage ofal | oc to allocate chunks of memory arfia ee to return them to the
system when finished. It also shows the use@él | oc to change the size of an allocated chunk
of memory.

This demonstrates one of the key differences between C aad i@ have to tell C when we are
finished with our allocated memory. Java ugasbage collection to reclaim memory no longer in
use automatically. We will consider the merits of both apgtees later in the semester; for now
we simply need to remember that any memory we allocate in G beuleased when we are done
with it. Advice: when you add aal | oc(), immediately add the correspondihgee() in an
appropriate place.

? Lab Question 1:
Draw a series of memory diagrams showing the state of thé stad heap variables In
existence and their values (indicate unintialized valugh & “?”) at the execution poin{s
labeled with comments as “EXECUTION POINT”s A, B, C, and D. (8rs)

? Lab Question 2:
Explain the purpose of each component oftfe¢ | oc statement on line 58 @r r ays. c:

b = (double *)mall oc(10+si zeof (doubl e));

(2 points)

CSC 381 Programming Unix in C Fall 2013

? Lab Question 3:
Explain how the i | e (*f)” loop that starts on line 112 cdr r ays. ¢ works. What
would happen if the first element of the array was a 0? What wioaigben if there was no|0
value in the array at all? (4 points)

<4 Practice Program:

Extend your input adder program to remember all the valuad ne by storing them in
dynamically-allocated array. Name your programput sor t adder . c. At the end, the
program should print the addition problem and its solutifrst with the numbers in thg
same order as entered, then sorted in increasing order (ight ose tha sort function
from last time). For example, given the input values 9, 4, Bntie program would print

D

9+4+5=18
4+5+9=18

Your task here is to be able to create the array and continoake it larger as needed. Start
with a reasonably-sized array (perhaps 10 slots). If the inpeits 10 or fewer values, yqu
are all set. But if an 11th value is input, you will need to redize array to make space. Use
the same strategy as Jav&/ect or or ArrayLi st class — double the size of the arfay
each time it fills. (10 points)

Strings

We have seen that strings in C are simply representblllak-terminated arrays afthar . The fol-
lowing example demonstrates more about this and gives dramapsome of C’s string processing
functions.

See Example:
/ home/ cs381/ exanpl es/ strings

Also read the man page fatt ri ng(3) . It lists the string processing functions available in the
standard C library.

<4 Practice Program:
K&R Exercise 5-4. Call your programt r end. ¢ and include arai n function that test
your program by passing the first two command-line parara¢tarai n as the paramete(s
s andt to your function. (6 points)

Pointersto Arrays and Multidimensional Arrays
Read Sections 5.6-5.10 of K&R.

Submission
Please submit all required files as email attachmentsr éscoj @strose.edu by 11:59 PM, Thurs-

CSC 381 Programming Unix in C Fall 2013

day, October 3, 2013. Be sure to check that you have used thectéite names and that your
submission matches all of the submission guidelines listethe course home page.

