
Computer Science 381
Programming Unix in C
The College of Saint Rose
Fall 2013

Lab 5: More Pointers and Arrays
Due: 11:59 PM, Thursday, October 3, 2013

In this week’s lab, you will gain more experience using arrays and pointers in C.

Reference solutions to all programs are available on mogul in/home/cs381/labs/pointers2.

Arrays, Arrays, Arrays

Have a look at this example, which demonstrates some of the ways we can declare, construct,
initialize, and otherwise use arrays in C.

See Example:
/home/cs381/examples/arrays

The comments in this program describe its usage of the most important C features. Pay special
attention to the usage ofmalloc to allocate chunks of memory andfree to return them to the
system when finished. It also shows the use ofrealloc to change the size of an allocated chunk
of memory.

This demonstrates one of the key differences between C and Java: we have to tell C when we are
finished with our allocated memory. Java usesgarbage collection to reclaim memory no longer in
use automatically. We will consider the merits of both approaches later in the semester; for now
we simply need to remember that any memory we allocate in C must be released when we are done
with it. Advice: when you add amalloc(), immediately add the correspondingfree() in an
appropriate place.

Lab Question 1:
Draw a series of memory diagrams showing the state of the stack and heap variables in
existence and their values (indicate unintialized values with a “?”) at the execution points
labeled with comments as “EXECUTION POINT”s A, B, C, and D. (8 points)

Lab Question 2:
Explain the purpose of each component of themalloc statement on line 58 ofarrays.c:

b = (double *)malloc(10*sizeof(double));

(2 points)



CSC 381 Programming Unix in C Fall 2013

Lab Question 3:
Explain how the “while (*f)” loop that starts on line 112 ofarrays.c works. What
would happen if the first element of the array was a 0? What wouldhappen if there was no 0
value in the array at all? (4 points)

Practice Program:
Extend your input adder program to remember all the values read in by storing them in a
dynamically-allocated array. Name your programinputsortadder.c. At the end, the
program should print the addition problem and its solution,first with the numbers in the
same order as entered, then sorted in increasing order (you might use theisort function
from last time). For example, given the input values 9, 4, and5, the program would print

9+4+5=18
4+5+9=18

Your task here is to be able to create the array and continue tomake it larger as needed. Start
with a reasonably-sized array (perhaps 10 slots). If the user inputs 10 or fewer values, you
are all set. But if an 11th value is input, you will need to resize the array to make space. Use
the same strategy as Java’sVector or ArrayList class – double the size of the array
each time it fills. (10 points)

Strings

We have seen that strings in C are simply represented asNULL-terminated arrays ofchar. The fol-
lowing example demonstrates more about this and gives examples of some of C’s string processing
functions.

See Example:
/home/cs381/examples/strings

Also read the man page forstring(3). It lists the string processing functions available in the
standard C library.

Practice Program:
K&R Exercise 5-4. Call your programstrend.c and include amain function that tests
your program by passing the first two command-line parameters tomain as the parameters
s andt to your function. (6 points)

Pointers to Arrays and Multidimensional Arrays

Read Sections 5.6-5.10 of K&R.

Submission

Please submit all required files as email attachments toterescoj@strose.edu by 11:59 PM, Thurs-

2



CSC 381 Programming Unix in C Fall 2013

day, October 3, 2013. Be sure to check that you have used the correct file names and that your
submission matches all of the submission guidelines listedon the course home page.

3


