Computer Science 381
Programming Unix in C
The College of Saint Rose

Fall 2013

Lab 1. C and Unix Introduction
Due: 10:25 AM, Wednesday, September 4, 2013

In this first lab, you will be introduced to the basics of C anaU

You may ask your instructor and classmates for help as yowpkimthis lab, but the work you
submit must ultimately be your own. If you are completelyamfliar with Unix, don’t hesitate to
ask questions! On the other hand, if you have some experidnod hesitate to help a classmate!

Preliminaries

Before you begin work on this lab, you should make sure you ogririto the Macs in the lab
(these should accept your regular username and passwara@)pan a command terminal (under
Applications/Utilities) and can log into our remote-aceésnux systenmogul.strose.edu

(a separate account that needs to be set up if you have nothisegistem for a previous course).

Also, read over the description of the types of items you aiitounter in our labs on the course
home page.

Motivation

GUIs are nice, but they can be slow to navigate and too résg&ior some purposes. You can often
work much more efficiently ny working in a Unix environmenidanteracting with the system by
typing commands at the Unshell or command lineWhen you log in, you will be presented with
a prompt. This is your direct interface to issue commandidmperating system. When you type
a command here, the shell will execute the command on youlhedrint out any results, then
reissue the prompt.

Of course, the command line is useless if you don’'t know wioatrmands it understands. You
will learn about several important commands in this lab ameshyrmore throughout the semester.
One of the most important iman— the Unix manual. Every Unix command has a manual page,
includingman To see the manual page abougin, type the command:

man man

The Emacs Editor

Emacs émacs from the Unix command line) is a powerful text editor, whichviery good for
programming in a language like C and for general plain-tehtireg. You will need to become
familiar with it.

CSC 381 Programming Unix in C Fall 2013

To try it out, you will use it to create yodab1l.txt file that will contain your answers to this
week’s lab questions. For at least this lab, you are to cridefile in your home directory on
mogul.

Log intomogul.strose.edu using ssh from a Terminal window on the Mac. If your username
onmogul.strose.edu isjcool , you would issue the command

ssh mogul.strose.edu -I jcool

at the terminal prompt. Log in with younogul.strose.edu password. You should be pre-
sented with a prompt that looks something like:

[[cool@mogul “I$

and mogul is now ready to accept your commands. More on tladse |
Now open a second Terminal window and log imogul.strose.edu on that one as well.

In one of the windows, launcemacs on the filelabl.txt
emacs labl.txt

Emacs should start up, and present you with a text-based m@aogs the top (which we will
purposely ignore), a large area where you can edit the filé,tan lines of status information
across the bottom.

Type your name and “Lab 1 Questions” in the Emacs window thatliting the fildab1l.txt

In the other window, launch anothemacs session where you can type some text and then identify
the function of and experiment with these Emacs commands:

C-x C-s C-x C-c Cx Cf CxCw Cg C-a C-e
C-d C-_ C-v M-v C-s C-r M-%
C-k C-y M-gg C-x u

C- before a key means hold dov@trl and hit that keyM- indicates the “Meta” key, which on

most systems iEsc. To issue a Meta command, hit tBsc key, release it, then hit the key(s) for
the command you wish to issue. Use the keystrokes rathethleanenus. It will save you time in

the long run! Note: for some of these commands, a very smé#kib(that is, the contents of the

file you are editing) will not allow you to see what they do. Seate a file with several screens
full of text before you go too far.

? Lab Question 1:
| Complete your Emacs command descriptiongabil.txt (3 points).

CSC 381 Programming Unix in C Fall 2013

Directory Structure

Itis always important, but especially so when working with tJnix command line, to know where
the files in various directories (often called “folders” oradintosh and Windows systems because
of how they are visually represented in GUIs) you might begisire actually stored, and where
and how those are accessible.

On the Macs in our labs, your home directories are (unfotipgplocal to each station. Any files
you save there are only on that computer and are not guadatteemain for a later session. If
you want to save files on your college network space, you wiicdito “mount it”. To do so, choose
“Connect to Server” from the “Go” menu in the Finder (or Commd&)do connect and then make
sure you save your files to the volume that you mount.

On mogul.strose.edu , we find a more standard Unix style environment. Each usemhas
home directorywhere only that user has permission to read and write filesr Nome directory is
the initial current directoryor working directorywhen you first log in.

The working directory is where the program will look for filaaless instructed to do otherwise.
You'll hear Unix users asking a question like “What directarg you in?” and the answer to this
is your working directory.

The commangbwd will instruct the shell to print your working directory.

? Lab Question 2:
| What is your home directory omogul.strose.edu ? (usepwd)

Note: lab questions are worth 1 point each unless othenpisefied.

? Lab Question 3:
| What is your home directory when you open a Macintosh Ternvifmadiow?

? Lab Question 4:
| What is the path to the directory where you mounted your celfegwork volume?

You can also list the contents of your working directory whle commands .

? Lab Question 5:
| What output do you see when you issue fdhhecommand ormogul.strose.edu ?

Other important operations to navigate and modify the tlirgcstructure are changing your work-
ing directory €d), creating a new directoryr(kdir), and removing a directoryrfdir).

Create a directory in your account for your work for this ceufs381 might be a good name),
and a directory within that directory for this assignmdab{l might be a good name).

CSC 381 Programming Unix in C Fall 2013

? Lab Question 6:
Change your working directory to the one you just created asde thepwd command
What does this show as your working directory?

In your shell window and in your home directory (note: you edways reset your working di-
rectory to be your home directory by issuing the commaddwith no parameters), issue this
command:

uname -a > linux.txt

This will execute the commanthame -a , which prints a variety of information about the system
you are on, and “redirects” the output, which would normakyprinted in your terminal window,
to the filelinux.txt

<4 Output Capture:
| linux.txt for 1 point(s)

Look at the contents of the filsux.txt with the command:

cat linux.txt

Do the same in a Mac terminal window, saving the outputredme -a in a file calledmac.txt

rngutput Capture:
| mac.txt for 1 point(s)

? Lab Question 7:
| What do you think the information ilinux.txt andmac.txt means?

Unix Commands

Identify the function of and experiment with these Unix coamds (a few of which you have
already used):

Is cd cp mv rm mkdir pwd
man chmod cat more grep head tail
In find rmdir wc diff scp touch

? Lab Question 8:
| Give a one sentence description of each command. (4 points)

CSC 381 Programming Unix in C Fall 2013

Using appropriate commands from the above list, moveie. txt andmac.txt files you
created in your home directory into the directory you créaia mogul for your work for this
assignment.

Show that this has worked by issuing the following commandiinside of your course directory
(but not inside the directory for this assignment):

Is -laR > Is.out

Then move the filés.out into the directory for this assignment.

<4 Output Capture:
| Is.out for 3 point(s)

Using the Unix manual, your favorite search engine, or ilcussion with your classmates, deter-
mine the answers to these questions:

? Lab Question 9:
How do you change your working directory to be “one level ugdhh the current working
directory? (Give the command.)

? Lab Question 10:
Give two or three different ways to change your working dioeg to be your home directory.
All likely involve the cd command, but will take different parameters.

The C Programming Language

C is a widely-used, general purpose language, well-suttéoli-level systems programming and
scientific computation.

We will initially study it assuming you have Java experigniceusing on the features that make
C significantly different from Java. Fortunately, Java bared much of its syntax from C, so it is
not difficult for a Java programmer to read most C programs.

C++ is a superset of C (that is, any valid C program is also a @i+ program, just one that
doesn’t take advantage of the additional features of C++). &dgis object-oriented feautures. In
this course, we will look only at C, not C++.

A Very Simple C Program

We will begin by seeing how to compile and run a very simple Ggpam gello.c) in a Unix
environment.

See Example:
/home/cs381/examples/hello

For you to run this, you will want to copy the example to youmogirectory. Create a directory
calledhello under your directory for this lab and copy the C file into tha¢ctory.

5

CSC 381 Programming Unix in C Fall 2013

Change to that directory and compile and run it:

gcc hello.c
Ja.out

Things to note from this simple example:

e We run a program namegtc , which is a free C compiler.

e gcc, inits simplest form, can be used to compile a C program imglsifile:
gcc hello.c

In this case, we’re askingcc to compile a C program found in the fikeello.c
Since we didn’t specify what to call the executable prograodpced, gcc produces a file
a.out . The name is.out for historical reasons.

e When we want to run a program located in our current directory Unix shell, we type its
name.

— For example, when we wanted to rgoc , we typed its name, and the Unix shell found
a program on the system in a file nangat .

— How does it know where to find it? The shell searches for progran a sequence of
directories known as theearch path Try: env.

— So if we want to runa.out , we should be able to type its name. But our current
directory, always referred to in a Unix shell by™ is not in the search path. We need
to specify the ¥ " as part of the command to run:

Ja.out

e Of course, we probably don’t want to compile up a bunch of progs all namea.out , so
we usually askgcc to put its output in a file named as one of the parametegsc¢a

gcc -0 hello hello.c

Here, the executable file produced is caltedlo

e And in the program itself, let's make sure we understandyghigrg:

— At the top of the file, we have a big comment describing whaptteggram does, who
wrote it, and when. Your programs should have somethingainm each C file.

CSC 381

Programming Unix in C Fall 2013

— We are going to use a C library function callpdntf to print a message to the

screen. Before we can use this function, we need to tell then@pider about it. For
C library functions, the needed information is providedaader fileswhich usually
end in.h . In this case, we need to inclug&dio.h . Why? Seanan 3 printf
(More on the Unix manual later.)

A C program starts its execution by calling the functimain . Any command-line
parameters are providedteain through the first two arguments to main, traditionally
declared asrgc , the number of command-line parameters (including the naine
the program itself), andrgv , an array of pointers to character strings, each of which
represents one of the command-line parameters. In this s&sdon’t use them, but
there they are.

Our call toprintf results in the string passed as a parameter to be printeceto th
screen. Thén results in a new line.

Ourmain function returns amt value. A value of O returned frormain generally
indicates a successful execution, while a non-zero renditates an error condition.
So we return a 0.

¢ Notes for Java programmers:

— Good news: much of the syntax of Java was borrowed from C, sbdd things will

look familiar.

— There are no classes and methods, fluisttions which can be called at any time. Any

information a function needs to do its job must be provideddparameters or exist in
global variables- variable declared outside of every function and which aoessible
from all functions.

Practice Program

Write your own C program namdaklloloop.c , much like the “Hello, World” example, but
which prints some other message and prints it 10 times indidefor loop. The Cfor loop
is much like Java’sor loop, except that the loop index variable needs to be detlaeéore the
loop. That is, a Java loop that looks like this:

for (int i=0; i<10; i++) {

}

would need to have the declarationiobutside of the loop:

int i;

/[any other code that happens before the loop

7

CSC 381 Programming Unix in C Fall 2013

for (i=0; i<10; i++) {
\

Make sure your program compiles and runs on either the Macguirusinggcc .
This program is worth 10 points.

Note: there are no formal “Programming Assignments” thiekve

Submission

Please submit all required files as email attachmeneyéscoj@strose.eday 10:25 AM, Wednes-
day, September 4, 2013. Be sure to check that you have usedrtieetdile names and that your
submission matches all of the submission guidelines ligstethe course home page.

Grading

| Grading Breakdown |

Lab questions and output captune20 points
Practice program 10 points

