
Computer Science 340
Programming Languages
Siena College
Fall 2019

Topic Notes: Object-Oriented Programming Support

Many programming languages support the object-oriented programming (OOP) paradigm. We
will review/consider some of the important issues both from a programmer’s perspective and that
of programming language design.

The text chapter describes OOP support in several languages. Again, we will focus on a subset of
the languages that cover the important OOP features.

Inheritance
The first major feature needed for OOP is support for abstract data types (ADTs), which we just
studied.

A second is inheritance – the ability to define new classes in terms of existing ones.

A major motivation for ADTs is to support code reuse. In some circumstances, this seems relatively
easy. Java’s ArrayList class serves many needs as-is, but it is often that case that an ADT
provides only some of the needed functionality for a given task. We would like to reuse what we
can but allow this extensibility. Inheritance provides the mechanism to do the latter.

First, some terminology, much of which you already know:

• classes – the definitions for ADTs

• objects – instances of classes

• derived class or subclass – a class that inherits from another, which is its parent class or
superclass – and we say the subclass extends the parent class

• data is in instance variables (those which are created uniquely for each object instance)
and class variables (those which exist once per class, regardless of whether or how many
instances exist)

• methods of a class provide the operations on objects of that class (instance methods) or on
the class itself (class methods)

• method calls are sometimes referred to as sending messages to an object and require both
method name and object on which to call the method while those to a class require method
name and class name

• entities of a class (i.e., methods, instance variables and class variables) might be available to
or hidden from subclasses, which is separate from being visible or hidden from users of the
class



CSIS 340 Programming Languages Fall 2019

• a subclass may override a method from its parent

• a subclass can add new entities to those provided by its parent

• with single inheritance, a subclass inherits directly from a single parent class

• with multiple inheritance, a subclass can inherit directly from multiple parent classes – much
more complex!

Polymorphism
The use of inheritance also usually requires support for polymorphism.

Suppose a parent class X is extended by subclass Y, and a method a is provided by X and overridden
by a method a provided by Y. Then a variable b of type X could refer to an instance of X or an
instance of Y. Polymorphism requires that a call to a through b (e.g., b.a()) would call the
method defined in X if b refers to an object of type X, and to the method defined in Y if b refers to
an object of type Y. This is also called dynamic binding.

Confused by the above paragraph?

See Example:
/home/cs340/examples/dynamicbinding

A related concept is that of an abstract method – one that a class defines only by protocol (i.e., the
method header) but without providing a complete definition. A class which includes an abstract
method is called an abstract class, and cannot be instantiated. Only subclasses that define
an actual implementation for its abstract methods can be instantiated. Note: C++ uses the term
virtual methods here.

OOP Design Issues
Several design issues arise in language support for OOP.

• Is everything an object?

A purely OOP language would require exclusivity of objects – that everything is an object.
Many languages (such as Java) include support for primitive types separate from objects, and
provide wrapper classes for situations where primitive types need to be treated as objects.

Allowing objects exclusively leads to a more elegant language at the likely expense of effi-
ciency.

• Is a subclass a subtype?

That is, if we construct an instance of a subclass, is it also an instance of its parent?

Usually, the answer here is yes. The text discusses some fairly subtle issues about this.

2



CSIS 340 Programming Languages Fall 2019

• Is multiple inheritance supported?

Java: no. C++: yes. The main disadvantage is in the complexity of implementation. How
does the language deal with potential name collisions? That is, if a subclass inherits from
two parents, each of which define an instance variable named x that is visible to the subclass.

C++, for example, checks at compile time and issues an error when a conflict occurs.

There is also the issue of diamond inheritance, as shown in Figure 12.3, where the parent
class X defines a method f. A extends X and overrides f. B extends X and also overrides f.
Then X extends both A and B. Which version of f would/should be called on an instance of
C?

Java chose to provide interfaces to provide some of the functionality that can be provided
through multiple inheritance, while avoiding the language complexity that multiple inheri-
tance would introduce.

In Java 8, the idea of default methods was added to interfaces:

On the web: Default Methods at tutorialspoint.com at
https://www.tutorialspoint.com/java8/java8 default methods.htm

This example demonstrates how it handles possible collisions similar to the diamond inheri-
tance problem described above:

See Example:
/home/cs340/examples/defaultmethods

Aside: what problems in terms of naming arise when new features like this are added to a
language and how did Java avoid name troubles?

• Allocation and deallocation of objects

Some languages require objects to allocated from the heap, with only references on the stack.

If stack dynamic allocation of objects is permitted, the problem of object slicing can arise:

Consider a class B which extends a class A and adds data fields. It would be legal to declare
instances on the stack:

A a;
B b;

and later assign:

a = b;

Which should be legal, as a B is an A. But b requires more space than a, so at best only the
part of b that uses A’s variables could be copied without exceeding the space needed.

3



CSIS 340 Programming Languages Fall 2019

• Static vs. Dynamic binding of methods

We saw that polymorphism requires a dynamic binding, but that had some expense (space
and time efficiency).

So some languages allow a user to specify when binding should be dynamic or not.

Dynamic binding sometimes used a mechanism called a virtual method table to locate the
appropriate version of a method to be called by an object. This introduces a cost to method
invocation.

• Initialization

On construction of a new object of a subclass, how are parent members initialized? De-
fault values? Call a default constructor of the parent implicitly? Call a parent constructor
explicitly?

Given this example, how does Java handle calling of constructors?

See Example:
/home/cs340/examples/javaconstructors

Language Support
The text describes support for OOP in several languages. The C++ section is well worth a read,
and we will discuss several points from it in class. The other sections are also interesting.

1 A Java Case Study

We will consider Java’s OOP support using a large package of data structures as a case study:

On the web: Java Structures at
http://www.cs.williams.edu/˜bailey/JavaStructures/Welcome.html

Also, the source code is available in https://github.com/SienaCSISDataStructuresJDT/
structure5.

Note in particular the extensive use of Java interfaces to define common functionality for various
classes of structures. Then, implementations of methods common to more than one other structure
that are “factored out” into abstract classes when possible.

4


