Computer Science 330

Operating Systems
SIENAcollege siena College

Computer Science Sprl ng 2012

Lab 5: Unix Systems Programming
Due: 4:00 PM, Wednesday, February 29, 2012

Quote: UNIX system calls, reading about those can be aboute®sting as reading the phone
book... — George Williams, 3/12/91

In this lab, we will learn and/or review several aspects oixXldystems programming, focusing on
those things you will need for the shell project.

You may work alone or in a group of 2 or 3 on this lab.

Start a plain text fileanswers.txt in your directory for this lab in which you will answer the
guestions scattered throughout the lab.

Low-level File Operations

You have used at least some of the C standard file I/O routieéeedl instdio.h , such as
fopen() , fscanf() , fprintf() , andfclose() . These provide relatively “high-level”
access to files in that you deal with data types rather thaw-dewel stream of bytes.

Underneath the stdio functions, you will find those low-lesperations:open() , close()
read() ,write()

Error Checking and Reporting
Before we look at the use of all of these, we recall the standant reporting mechanism.

Most Unix system calls can fail for a variety of reasons. Ybaiwdd always check the return value
of system calls that may fail.

Read thentro(2) man page on winterstorm and tegno(3) andperror(3) man pages

on a Linux system to learn about or refresh your knowledgé®étrno error condition and the

system callgperror(3) andstrerror(3) that allow you to print out (hopefully) meaningful
error messages when you detect a failed system call.

Question 1: The file /usr/include/errno.h in FreeBSD defines all of the names for the
error conditions. What is the highest-numbered error in us&iaterstorm? (1 point)

For example, consider a program that uses the low-lgpeh andclose system calls:

See Example:
“jteresco/shared/cs330/examples/perror

Copy this program to your directory and compile it (it haglakefile).

Question 2: What is the output when you run the program? (1 point)

CS 330 Operating Systems Spring 2012

Question 3: Create the file “nonexistent.txt”. Now what is the output wiyen run the program?
(1 point)

Question 4: Modify the program so you get an error condition on these system call. Briefly
describe your modification and give the error reported. (Rtsd

With Unix system calls, there are a lot of good reasons thatesioing can fail. It's worth your
trouble to check these return conditions and print meanirggfor messages.

A More Complete Example

Whereadopen returns a value of typEILE =+, theopen call returns annt . Thisint has a
special meaning — it is file descriptor It can subsequently be usedrigad andwrite calls,
and is later passed tdose when we are done.

There are three file descriptors that are automaticallytedgfar each process:

0 the standard inpus{din)
1 the standard outpus{dout)
2 the standard error outpustflerr)

Read through the man pages for these four system calls, timsideo this example:

See Example:
“jteresco/shared/cs330/examples/everyother

Question 5: Theopen calls take some flags as their second parameter. What do tkerikzan in
the two calls in this program? Note that a “bitwise or” is usedombine them on the second call.
Why? (2 points)

Question 6: What is the output of the program when you use the progrant @sehput? (1 point)

Running a New Program — theexec Calls

Recall that thdork() system call lets you have two copies of a process — each ryitimensame
program and executing at the statement immediately foligwiefork() call.

See Example:
“jteresco/shared/cs330/examples/forking

Sometimes this is what you want, but more likely you will wemstart a new process to run some
new program.

To create processes that do “something else”dHe) is followed by one of these “exec” calls,
in the child process:

execl() —exec a process with list of arguments
execv() —exec a process with args specified in an array
execlp() —list, but search the existing path for the program.

execvp() —array, but search the existing path for the program.

CS 330 Operating Systems Spring 2012

execvP() - array, but specify a search path for the program.
The man pages have details.

The relatedsfork() system call is often more appropriate when the child prosgéibe doing
anexec() immediately. It doesn't duplicate all of the memory for therent process. Beware:
this may cause you trouble in the shell if you use it, sinceptrent is usually suspended until the
child exit s or calls arexec .

We consider a series of example programs.

See Example:
“jteresco/shared/cs330/examples/exec

Start by looking at thexec program:

e This one usesxeclp . The parameters are the program to run and its arguments.

e This is a “varargs” function call — we can send any number capeeters.

Question 7: What is the output of the program when you run it? (1 point)

Question 8: Change the program so it attempts to “exec” a program thatndoesist. What
happens then? (1 point)

Note that we can specify a program by its name only (llké), in which case the search path is
used to try to find a program to run. We can also give a full path& program (liké/bin/Is")
in which case the program must be at the exact path specified.

Next, we look at a program that doesn’t use any of the “exelts,daut which will be useful as we
look at further examplegrocinfo . This one simply prints the process id and the command-line
parameters (including one beyond the last).

Use theexecprocinfo program to executprocinfo
Question 9: What does the output tell us about the value provideargv[0] ? (1 point)

Next, look atexec2 , which useexecvp() instead oexeclp() . Thisis the “list” form rather
than the “varargs” form. We pasNULL-terminated array of parameters.

Question 10:Run the progranexec2nonull , which first “forgets” theNULL in the array, then
later adds it in but not immediately. Explain the resultsp@its)

Our last example program execwithargs , which uses its command-line parameters to deter-
mine which program it should become (weird).

Question 11: Use this program to execuggocinfo . What command line did you use? What
was the output? (2 points)

Question 12: What would happen if we mistakenly usegv[0] for both parameters to the
execvp call? (1 point)

Question 13: Use the program to execute itself 3 times before executimgesother program.

3

CS 330 Operating Systems Spring 2012

What command line did you use? What was the output? (2 points)
Practice With exec

Write a progranmexeclsloop.c that loops forever (well, until you Kill it) and every 5 sedw
creates a child process that executesl and waits for that child process to finish. You may use
any of the class examples as a starting point if you'd likgpdbts)

Signals
We next consider a form of interprocess communication in & 8ystem known asignals

Question 14: Runkill -l at on both a Linux and a FreeBSD system to see the list of signals
supported by each. What is the output on each system? (1 point)

We can send a sign&8IIGNAL to a procesgid with the command
kill -SIGNAL pid

For example, if we launch a program at our Unix prompt to sfeep0 seconds and put it into the
background:

-> sleep 60 &
you should see output something like:
[1] 96132

where “96132” would be the process id of tsleep process you just created, ajid is the job
number within your Unix shell of the process.

We can then send signals to that process by using its gitllavhich will refer to job number 1.

For example:
-=> kill -TERM %1

will send theSIGTERMsignal to try to terminate the process. If you do this, youwstheee output
similar to:

[1]+ Terminated sleep 60

Now launch anothesleep 60 process in the background. Assuming this becomes shell,job 1
issue these commands:

CS 330 Operating Systems Spring 2012

-> kill -STOP %1
-> kill -CONT %1

and wait until thesleep command finishes.
Question 15:What do these do, and what output do you see? (2 points)

Every process haggnal handlerghat are used to respond to signals sent to the process. Basica
it's a function that gets callegsynchronouslyhen a signal is received.

A default signal handlers installed when a process begins.
Two system calls are used to send and catch signals:

signal() replaces default handler. This lets yvap many signals and handle them appropri-
ately.

Be careful not to confuse thssgnal() with thesignal() operation on semaphores!

See Example:
“jteresco/shared/cs330/examples/signals

Thesigalrm-example.c example is compute-bound process that “wakes up” everydnsisc
to report on its progress.

Thesetitimer(2) system call is used to set a “timer” which will caus8kALRMsignal to
be sent to the process at some time in the future (in this easey 5 seconds).

Question 16:What line sets up the signal handler 8IGALRM What function acts as the signal
handler forSIGALRM (1 point)

We can ignore a signal completely by setting its handleBSIG IGN, and restore the default
handler withSIG _DFL.

Consider this enhanced exampsggalrm-example2.c

Question 17: Which signals are handled by the signal handling functiornis éxample? Which
ones are ignored completely? (2 points)

A process can also send signals wkih() . Don't let the name fool you, you can send any
signal withkill() , hot justSIGKILL .

Note thatSIGTERMs handler sends the procesSESINT .

Question 18: What happens when you send each of these signals to your guprogram us-
ing thekill command from the command lineSIGALRM SIGINT , SIGTERM SIGSTOR,
SIGCONT SIGUSR1, andSIGKILL . Try each out and paste in your output for each. (3 points)

Final note about signalsSIGCHLD will be useful for your shell projects. This gets sent to a
process’s parent when the process terminates.

Pipes

CS 330 Operating Systems Spring 2012

Processes may wish to send data streams to each other.plgesare one way to achieve this.
You've almost certainly used Unix pipes at the command I¥ei can also use them in programs.

An unnamed pipe can be created using the
int pipe(int fd[]);

system call.fd is an array of twant values. These are file descriptors, very similar to the file
descriptors used for file I1/0O usirapen() , read() , andwrite()

fd[0] isthe “read end” anfd[1] is the “write end”. O return means success. -1 means failure.

read() andwrite() again operate only on basic streams of bytes — any structust be
added.

See Example:
“jteresco/shared/cs330/examples/pipes

pipel.c is an example of communication between two processes, atpand its child created
by fork() , communicating via an unnamed pipe.

Question 19:What is the output when you run this program? (1 point)

This required that the values fif are shared between the parent and child processes. This is fin
when you create your pipe just befordaak() , but what if we have two processes already in
existence that wish to communicate through a pipe?

We can create aamed pipeavith mkfifo (command or system call).
pipe2.c augments our simple example using a named pipe.
Question 20:Run this program without creating the pifiestpipe” . What happens? (1 point)

Question 21: Create the named pipe usingkfifo . What is the output of the commarsl -
testpipe after you do this? (1 point)

Question 22: Now run the program again with the named pipe in place. Whdtdoutput? (1
point)

pipeprocs.c is an example that’s a little more interesting: two indeerigrocesses commu-
nicate through a pipe.

Question 23: Run two instances of this program in two different windowse ¢o read, one to
write. What is the output from each program? Does it matteciwbrder you create the processes?
(2 points)

Duplicating file descriptors

We can use thdup2() system call to “reroute” input or output from one file destwigo another
file descriptor. This is how your I/O redirection and piped wrk in the shell.

Back in theexec example set, see and texecredir.c

6

CS 330 Operating Systems Spring 2012

Question 24:1f you run the program with a paramet&utfile” , what ends up ioutfile ?
Why? (1 point)

Note that we don’t close the file here and in fact are not giveo@portunity to do so since we
lose control once thexeclp call occurs.

We have seen that you can also obtain file descriptors ipen() , pipe() . The fd's at the
ends of a pipe can be passeditp2() as well — this will be useful in the shell — set the output
of one process to be the input of another through a pipe.

Submission and Evaluation
This lab is graded out of 40 points.

By 4:00 PM, Wednesday, February 29, 2012, submit yamswers.txt andexeclsloop.c
files by email tgteresco@siena.edu

| Grading Breakdown |

answers.txt responses 35 points
execlsloop.c program| 5 points

