
Computer Science 330
Operating Systems
Siena College
Spring 2012

Lab 5: Unix Systems Programming
Due: 4:00 PM, Wednesday, February 29, 2012

Quote: UNIX system calls, reading about those can be about asinteresting as reading the phone
book... – George Williams, 3/12/91

In this lab, we will learn and/or review several aspects of Unix systems programming, focusing on
those things you will need for the shell project.

You may work alone or in a group of 2 or 3 on this lab.

Start a plain text fileanswers.txt in your directory for this lab in which you will answer the
questions scattered throughout the lab.

Low-level File Operations

You have used at least some of the C standard file I/O routines defined instdio.h , such as
fopen() , fscanf() , fprintf() , and fclose() . These provide relatively “high-level”
access to files in that you deal with data types rather than a low-level stream of bytes.

Underneath the stdio functions, you will find those low-level operations:open() , close() ,
read() , write() .

Error Checking and Reporting

Before we look at the use of all of these, we recall the standarderror reporting mechanism.

Most Unix system calls can fail for a variety of reasons. You should always check the return value
of system calls that may fail.

Read theintro(2) man page on winterstorm and theerrno(3) andperror(3) man pages
on a Linux system to learn about or refresh your knowledge of theerrno error condition and the
system callsperror(3) andstrerror(3) that allow you to print out (hopefully) meaningful
error messages when you detect a failed system call.

Question 1: The file /usr/include/errno.h in FreeBSD defines all of the names for the
error conditions. What is the highest-numbered error in use on winterstorm? (1 point)

For example, consider a program that uses the low-levelopen andclose system calls:

See Example:
˜jteresco/shared/cs330/examples/perror

Copy this program to your directory and compile it (it has aMakefile ).

Question 2: What is the output when you run the program? (1 point)



CS 330 Operating Systems Spring 2012

Question 3: Create the file “nonexistent.txt”. Now what is the output whenyou run the program?
(1 point)

Question 4: Modify the program so you get an error condition on theclose system call. Briefly
describe your modification and give the error reported. (2 points)

With Unix system calls, there are a lot of good reasons that something can fail. It’s worth your
trouble to check these return conditions and print meaningful error messages.

A More Complete Example

Whereasfopen returns a value of typeFILE * , theopen call returns anint . This int has a
special meaning – it is afile descriptor. It can subsequently be used inread andwrite calls,
and is later passed toclose when we are done.

There are three file descriptors that are automatically created for each process:

0 the standard input (stdin )
1 the standard output (stdout )
2 the standard error output (stderr )

Read through the man pages for these four system calls, then consider this example:

See Example:
˜jteresco/shared/cs330/examples/everyother

Question 5:Theopen calls take some flags as their second parameter. What do the flags mean in
the two calls in this program? Note that a “bitwise or” is usedto combine them on the second call.
Why? (2 points)

Question 6:What is the output of the program when you use the program itself as input? (1 point)

Running a New Program – theexec Calls

Recall that thefork() system call lets you have two copies of a process – each running the same
program and executing at the statement immediately following thefork() call.

See Example:
˜jteresco/shared/cs330/examples/forking

Sometimes this is what you want, but more likely you will wantto start a new process to run some
new program.

To create processes that do “something else”, thefork() is followed by one of these “exec” calls,
in the child process:

execl() – exec a process with list of arguments

execv() – exec a process with args specified in an array

execlp() – list, but search the existing path for the program.

execvp() – array, but search the existing path for the program.

2



CS 330 Operating Systems Spring 2012

execvP() – array, but specify a search path for the program.

The man pages have details.

The relatedvfork() system call is often more appropriate when the child processwill be doing
anexec() immediately. It doesn’t duplicate all of the memory for the parent process. Beware:
this may cause you trouble in the shell if you use it, since theparent is usually suspended until the
child exit s or calls anexec .

We consider a series of example programs.

See Example:
˜jteresco/shared/cs330/examples/exec

Start by looking at theexec program:

• This one usesexeclp . The parameters are the program to run and its arguments.

• This is a “varargs” function call – we can send any number of parameters.

Question 7: What is the output of the program when you run it? (1 point)

Question 8: Change the program so it attempts to “exec” a program that doesn’t exist. What
happens then? (1 point)

Note that we can specify a program by its name only (like"ls" ), in which case the search path is
used to try to find a program to run. We can also give a full path to the program (like"/bin/ls" )
in which case the program must be at the exact path specified.

Next, we look at a program that doesn’t use any of the “exec” calls, but which will be useful as we
look at further examples:procinfo . This one simply prints the process id and the command-line
parameters (including one beyond the last).

Use theexecprocinfo program to executeprocinfo .

Question 9: What does the output tell us about the value provided inargv[0] ? (1 point)

Next, look atexec2 , which usesexecvp() instead ofexeclp() . This is the “list” form rather
than the “varargs” form. We pass aNULL-terminated array of parameters.

Question 10:Run the programexec2nonull , which first “forgets” theNULL in the array, then
later adds it in but not immediately. Explain the results. (3points)

Our last example program isexecwithargs , which uses its command-line parameters to deter-
mine which program it should become (weird).

Question 11: Use this program to executeprocinfo . What command line did you use? What
was the output? (2 points)

Question 12: What would happen if we mistakenly useargv[0] for both parameters to the
execvp call? (1 point)

Question 13: Use the program to execute itself 3 times before executing some other program.

3



CS 330 Operating Systems Spring 2012

What command line did you use? What was the output? (2 points)

Practice With exec

Write a programexeclsloop.c that loops forever (well, until you kill it) and every 5 seconds,
creates a child process that executesls -l and waits for that child process to finish. You may use
any of the class examples as a starting point if you’d like. (5points)

Signals

We next consider a form of interprocess communication in a Unix system known assignals.

Question 14: Runkill -l at on both a Linux and a FreeBSD system to see the list of signals
supported by each. What is the output on each system? (1 point)

We can send a signalSIGNAL to a processpid with the command

kill -SIGNAL pid

For example, if we launch a program at our Unix prompt to sleepfor 60 seconds and put it into the
background:

-> sleep 60 &

you should see output something like:

[1] 96132

where “96132” would be the process id of thesleep process you just created, and[1] is the job
number within your Unix shell of the process.

We can then send signals to that process by using its pid or%1which will refer to job number 1.

For example:

-> kill -TERM %1

will send theSIGTERMsignal to try to terminate the process. If you do this, you should see output
similar to:

[1]+ Terminated sleep 60

Now launch anothersleep 60 process in the background. Assuming this becomes shell job 1,
issue these commands:

4



CS 330 Operating Systems Spring 2012

-> kill -STOP %1
-> kill -CONT %1

and wait until thesleep command finishes.

Question 15:What do these do, and what output do you see? (2 points)

Every process hassignal handlersthat are used to respond to signals sent to the process. Basically,
it’s a function that gets calledasynchronouslywhen a signal is received.

A default signal handleris installed when a process begins.

Two system calls are used to send and catch signals:

signal() replaces default handler. This lets youtrap many signals and handle them appropri-
ately.

Be careful not to confuse thissignal() with thesignal() operation on semaphores!

See Example:
˜jteresco/shared/cs330/examples/signals

Thesigalrm-example.c example is compute-bound process that “wakes up” every 5 seconds
to report on its progress.

Thesetitimer(2) system call is used to set a “timer” which will cause aSIGALRMsignal to
be sent to the process at some time in the future (in this case,every 5 seconds).

Question 16:What line sets up the signal handler forSIGALRM? What function acts as the signal
handler forSIGALRM? (1 point)

We can ignore a signal completely by setting its handler toSIG IGN, and restore the default
handler withSIG DFL.

Consider this enhanced example:sigalrm-example2.c

Question 17:Which signals are handled by the signal handling function in this example? Which
ones are ignored completely? (2 points)

A process can also send signals withkill() . Don’t let the name fool you, you can send any
signal withkill() , not justSIGKILL .

Note thatSIGTERM’s handler sends the process aSIGINT .

Question 18: What happens when you send each of these signals to your running program us-
ing thekill command from the command line?SIGALRM, SIGINT , SIGTERM, SIGSTOP,
SIGCONT, SIGUSR1, andSIGKILL . Try each out and paste in your output for each. (3 points)

Final note about signals:SIGCHLDwill be useful for your shell projects. This gets sent to a
process’s parent when the process terminates.

Pipes

5



CS 330 Operating Systems Spring 2012

Processes may wish to send data streams to each other. Unixpipesare one way to achieve this.
You’ve almost certainly used Unix pipes at the command line.You can also use them in programs.

An unnamed pipe can be created using the

int pipe(int fd[]);

system call.fd is an array of twoint values. These are file descriptors, very similar to the file
descriptors used for file I/O usingopen() , read() , andwrite() .

fd[0] is the “read end” andfd[1] is the “write end”. 0 return means success. -1 means failure.

read() and write() again operate only on basic streams of bytes – any structure must be
added.

See Example:
˜jteresco/shared/cs330/examples/pipes

pipe1.c is an example of communication between two processes, a parent and its child created
by fork() , communicating via an unnamed pipe.

Question 19:What is the output when you run this program? (1 point)

This required that the values offd are shared between the parent and child processes. This is fine
when you create your pipe just before afork() , but what if we have two processes already in
existence that wish to communicate through a pipe?

We can create anamed pipewith mkfifo (command or system call).

pipe2.c augments our simple example using a named pipe.

Question 20:Run this program without creating the pipe"testpipe" . What happens? (1 point)

Question 21:Create the named pipe usingmkfifo . What is the output of the commandls -l
testpipe after you do this? (1 point)

Question 22: Now run the program again with the named pipe in place. What is the output? (1
point)

pipeprocs.c is an example that’s a little more interesting: two independent processes commu-
nicate through a pipe.

Question 23: Run two instances of this program in two different windows, one to read, one to
write. What is the output from each program? Does it matter which order you create the processes?
(2 points)

Duplicating file descriptors

We can use thedup2() system call to “reroute” input or output from one file descriptor to another
file descriptor. This is how your I/O redirection and pipes will work in the shell.

Back in theexec example set, see and tryexecredir.c .

6



CS 330 Operating Systems Spring 2012

Question 24: If you run the program with a parameter"outfile" , what ends up inoutfile ?
Why? (1 point)

Note that we don’t close the file here and in fact are not given an opportunity to do so since we
lose control once theexeclp call occurs.

We have seen that you can also obtain file descriptors fromopen() , pipe() . The fd’s at the
ends of a pipe can be passed todup2() as well – this will be useful in the shell – set the output
of one process to be the input of another through a pipe.

Submission and Evaluation

This lab is graded out of 40 points.

By 4:00 PM, Wednesday, February 29, 2012, submit youranswers.txt andexeclsloop.c
files by email tojteresco@siena.edu.

Grading Breakdown

answers.txt responses 35 points
execlsloop.c program 5 points

7


