
Computer Science 330
Operating Systems
Siena College
Spring 2012

Lab 2: Programming Unix Processes and Threads in C
Due: 9:20 AM, Friday, February 3, 2012

This week, you will gain experience creating and managing processes and threads in our Unix
environments.

You may work individually or with a partner on this lab assignment.

Running Class Examples

Run the class examples that usedfork and POSIX threads in the following three environments to
answer the questions that follow in a fileanswers.txt.

1. A Linux system in the lab.

2. The Linux systemappserver.sos.siena.edu.

3. The FreeBSD systemwinterstorm.teresco.org.

Question 1: Show the output ofps on each system showing the both the parent and child processes
of theforking program, along with the output of the program on each system.(2 points)

Question 2: Log into a Linux system in the lab other than the one where you are doing the
work for this lab (in case this crashes the system), and run the forkbomb program. How many
processes can you create before you either get an error message (or the system crashes)? We won’t
try this experiment now on the other systems, but I was able tocreate over 3000 processes on
winterstorm before running into trouble and well over 23,000 (!) onappserver. (1 point)

Question 3: Draw a memory diagram showing all of the variables in existence in thepthreadhello
example when both child threads are executing. (2 points)

A sample output of thewhat shared program on the Mac as we saw in class is:

First, we create two threads to see better what context they share...
Set this_is_global=1000
Thread 1, pid 67582, addresses: &global: 10A8, &local: B5EFC
In Thread 1, incremented this_is_global=1001
Thread 2, pid 67582, addresses: &global: 10A8, &local: 280EFC
In Thread 2, incremented this_is_global=1002
After threads, this_is_global=1002

Now that the threads are done, let’s call fork..



CS 330 Operating Systems Spring 2012

Before fork(), local_main=17, this_is_global=17
In parent, pid 67582: &global: 10A8, &local: 5FBFEF5C
In child, pid 67583: &global: 10A8, &local: 5FBFEF5C
Child set local_main=13, this_is_global=23
In parent, local_main=17, this_is_global=17

Question 4: Run thewhat shared example in each of the environments and paste in your
output. What important differences do you see in the output and what do these differences mean?
(3 points)

On the Mac, we saw in class that theproctree threads program could create a thread tree of
height 10 without encountering any thread creation errors,but did encounter errors at height 11.

Question 5: What is the tallest tree you can create on each of the three environments before thread
creation errors are reported? (1 point)

fork() Practice

Write the program for SG&G Programming Problem 3.14 on p. 134-135. Call your program
forkfib.c. Include aMakefile that compiles this program into an executable calledforkfib.

Notes:

• Do some error checking. If your program is run without a command-line argument, print a
“Usage” line. If your program is given a negative length for the Fibonacci sequenace, print
an appropriate error message.

• If you store the entire sequence in an array as you generate it, allocate the array of an appro-
priate size usingmalloc(3) Reminder to Java programmers: C has no garbage collection,
so any memory you allocate withmalloc() must be returned to the system withfree().

• If you store the values in the sequence withint values, you will notice they may overflow
the storage capabilities of the data type. You can delay thissomewhat by usinglong values.
Even then, you will overflow the values with a relatively short sequence. In this case, also
print an error message.

Adding POSIX Shared Memory

Read Section 3.5.1 of SG&G to learn about POSIX shared memory.Then write the program for
Exercise 3.18 on p. 137-138 of SG&G. Call your programforkfibshared.c and include a
Makefile that compiles this program intoforkfibshared.

Once your program is working, add a call tosleep(2) (recall that “2” here refers to the manual
section, not the argument to pass) to your program before youdetach and free the shared memory
segment. In a separate window, use theipcs command to see that your shared memory segment
is listed, and that it goes away when your program terminates. Save this output and include it in a
file ipcs.out to be included in your submission.

2



CS 330 Operating Systems Spring 2012

Now Using POSIX Threads

Write the program for Exercise 4.17 on p. 168-169 of SG&G. Call your programpthreadfib.c
and include aMakefile that compiles this program intopthreadfib.

Submission and Evaluation

This lab is graded out of 40 points.

To submit this lab, place all of the files that you are to turn in(and nothing else) into a directory,
change to that directory, and create a “tar file” to submit using a command similar to:

tar cvf lab2.tar *.out *.txt *.c Makefile

This will create a filelab2.tar in your directory. Send this tar file as an attachment tojteres-
co@siena.edu by 9:20 AM, Friday, February 3, 2012.

Please include a meaningful subject line (something like “CS330 Lab 2 Submission”) and use the
exact filenames specified (for this lab and all semester) to make my job easier when gathering your
submissions together for grading. You don’t want to annoy your grader with misnamed or missing
files just before he grades your assignment. Please do not include any additional files, such as
emacs backup files, object files, or executable programs.

Grading Breakdown

answers.txt responses and 9 points
forkfib.c correctness 6 points

forkfib.c efficiency, style, and elegance 2 points
forkfib.c documentation 2 points

forkfibshared.c correctness 6 points
forkfibshared.c efficiency, style, and elegance2 points

forkfibshared.c documentation 2 points
pthreadfib.c correctness 6 points

pthreadfib.c efficiency, style, and elegance 2 points
pthreadfib.c documentation 2 points
Makefile(s) to build executables 1 point

3


