Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Modern Architecture Theme: Parallelism

The increases in processing power for decades have come dtdeast in part, faster and faster
clock speeds.
e we have seen in this course some of the reasons for limisatigate delays

e smaller components means shorter gate delays, allowintesiotock cycles and faster pro-
cessors

e as we approach the physical limitations of the sequent@dgssor, performance gains are
coming more and more from the exploitation of parallelism

o there are many ways to expose native concurrency and irdeogplicit parallelism to our
processors, and we'll look at a few today

| nstruction-L evel Parallelism
We begin with the topics in P&H Section 4.10nstruction-level parallelism (ILP).

The idea here is that we take a sequence of instructions rthantended to be executed one at a
time and in sequence and attempt to overlap their execuiMmneed to take care to ensure that
any parallelism we introduce will produce the same resut@®ne at a time, sequential execution
of those instructions.

We have seen one very common method of exploiting paratieNgh this approach — pipelining.

We saw how pipelining can improve the throughput of insinng for a processor, at the expense
of some additional hardware. We also saw how much care isreghio ensure correctness in this
case, dealing with hazards through data forwarding andipgstalls.

One way to achieve this is to try to lengthen our pipelinesaking down the slower stages into
multiple stages to allow each stage to be shorter and to aflove instructions to be executing in
parallel in the pipeline.

Another common approach to instruction-level parallelissolves launching more than one in-
struction at each pipeline stage — a technique catleldi ple issue.

The goal here is to be able to issue (start/complete) moredha instruction per cycle. The range
in modern processors is 3-6 instructions issued per cloclecy

Our text breaks down multiple issue into two main categories

CS 324 Computer Architecture Fall 2009

1. static multiple issue — where the parallelism is determined, at least in particsilt by a
compiler

2. dynamic multiple issue — where parallelism is determined at run-time by the pramess
In either case, instructions are organized iistoe slots, which are “starting positions” in prepara-
tion for entry into the pipeline.

Instructions need to be organized so that they can be exkoufarallel with each other (and in
parallel with other instructions already in the pipelingjthout interference.

We saw how important and potentially complex data and coh&tpards can be even in our 5-stage
single-issue pipeline — adding ILP provides more “oppdtitidor hazards.

Dealing with the potential hazards is a collaborative eff@tween a compiler that would produce
code that avoids hazards and hardware that detects thermealsivdth them appropriately (using
the kinds of techniques we discussed earlier).

An important idea in achieveing an effective ILP is thatspéculation. Here, we make some
guesses or assumptions about instructions, in hopes oirigeepr multiple pipelines full. If we're
lucky, at least some of the pipelines will be doing useful kvor

Speculation might include:

e Execution of conditional branches — start executing bogt‘then” and “else” clauses.

¢ Parallel execution of code that may have data dependenstast-executing assuming things
are fine, go back and cancel if there’s a problem.

However, speculation can be incorrect so mechanisms mustheled to deal with those cases
where problems arise.

Static | ssue/Explicitly Parallel Instruction Computers

With static multiple issue, the burden to package instamsifor execution in multiple pipelines is
placed on the compiler.

Static multiple issue has also been referred to asxplécitly parallel instruction computer (EPIC)
or very long instruction word (VLIW) machine.

Examples of EPIC/VLIW architectures include Yale’s ELI amtel’s Itanium.

Very Long Instruction Word (VLIW)

control _«| opcode | opcode | opcode | opcode
bits v v v v

fnctl fnctl fnctl fnctl

unit unit unit unit

CS 324 Computer Architecture Fall 2009

e An issue packet of instructions, also called molecule or abundle, is made up of several
concurrently executed instructions, sometimes caltenhs.

e Each atom, which is like a single traditional instructianassigned to a separdtmctional
unit.

e The processor may have additional registers, where eaohggts its own copy of registers
that arecommitted only when the atom is retired (completed).

e Speculative execution: avoid conditional branch overkeexkcutet hen and el se, but
commit only one (Disadvantage: some work is guaranteed weséed).

if (C) {
C s1 S2 S1;

Y Y Y Y }
fnc'tl fnc'tl fnc.tl fnc.tl eISsZe_{
unit unit unit unit :

}

e This required very complex programming — it's meant to beedioyy compilers, not people.

We'll consider a simple example, the one in P&H Figures 4168 469 which show a two-issue
MIPS processor.

e Rule: each issue packet can contain at most one ALU/Branaluatistn and one load/store
instruction.

e The compiler groups instructions when possible — insarbp into one of the pipelines
when no appropriate instruction is available to group withirsstruction that needs to be
executed.

e The compiler may be held responsible for removing all hazaatlowing us to simplify the
hardware (remove or reduce the complexity of hazard detexti

e Even without additional forwarding and/or hazard detettadditional hardware is needed
to permit more values to be read/written to the register fileeach cycle and to be able to
compute both ALU result or a branch target at the same timen agfactive address for a
memory access.

Figure 4.70 shows how the following loop could be adaptethéaivo-issue setup:

CS 324 Computer Architecture Fall 2009

Loop: | w $t0, 0(%sl) # tenmp = array elt
addu $t0, $t0, $s2 # add $s2 val to tenp
SW $t0, 0(%$s1) # array elt = tenp
addi $s1, $sl1, -4 # advance to prev array elt

bne $s1, $zero, Loop # branch if s1!=0

In Figure 4.70, we see a very disappointing situation - tieelitle opportunity to make use of our
two-issue system.

Figure 4.71 shows a much more effective translation of theg fto the two-issue system. Here, we
use the technique we discussed earlier, loop unrollingeteerate multiple copies of the code in
the loop, so each iteration of the generated code perfornitgheipasses of the original loop. This

gives much more opportunity for rescheduling the instargito pair up ALU/branch instructions

with memory ops.

Dynamic Multiple | ssue/Super scalar Processors

Moving away from the compiler and toward the hardware, wectanrsider asuperscalar processor
that is capable of starting multiple “regular” instructeofnot a compiler-generated issue packet)
on each clock cycle.

In its simplest form, the hardware will consider the next festructions (in order) and quickly
determine how many may safely be executed in parallel (awpidazards), and will issue that
collection of instructions as a group.

Figure 4.72 shows an exampleayinamic pipeline scheduling where a three-stage pipeline is used
to collect groups of instructions to be executedr@gervation stations), execute them in parallel
and/or out of order, using multiple functional units (mayle12 at a time), and @mmit unit that
writes back the results of the instructions in order.

Figure 4.73 shows some statistics about the parallelisnidier @and recent Intel and Sun proces-
sors.

|ntel Pentium Parallel Extensions

You may have heard of the MMX (and AMD’s 3DNow!, and more rebe®SE, SSE2, SSES3,
SSE4, and SSE5S) extensions to the Intel Pentium core.

e SSE expands to “Streaming SIMD Extensions”, where SIMD sng8s Instruction Multiple
Data”

e These use a very simple idea to support arithmetic on sherangs: cut the carry lines. By
using a 64-bit ALU but not passing along the carry from oneugrof 8 bits to the next, we
can manipulate 8 bytes independently but simultaneousysingle instruction.

e To make this work, packing and unpacking instructions asslad.

CS 324 Computer Architecture Fall 2009

o With these relatively simple and few changes to the ALU, glgiinstruction could process
two RGB+u pixels in a single operation:

rerrrrrr gggggggg bbbbbbbb al phal ph rrrrrrrr gggggggg bbbbbbbb al phal ph

e Several modes are provided to allow the ALU to consider psiiras 8 independent bytes or
4 independent 2-byte values or 2 independent 4-byte values.

e However, this makes programming more challenging: comsideditional pixel modifica-
tion.

Multiprocessors

For as long as there have been computers, they have not beenfgloenough for some tasks.
Sure, one can walit for the next, faster processor to comgabut those with with very expensive
computations to be performed have turned to parallel psdsg$or a very long time. And in recent
years, the limitations of current technology in terms of powonsumption and heat dissipation
have forced parallelism to your personal computers.

We’ll say more about the chips you find in current PCs soon,doutdéw, we’ll consider the wider
range of parallel hardware. Programming these multipsmrass also a significant and difficult
task, but for now we will put that issue aside and assume teatam extract some parallelism from
our programs — that is, the ability to send meaningful ingtams to more than one processor at a
time to have them cooperate to solve a problem.

First, a bit of terminology:

Sequential Program: sequence of actions that produce a result (statementsiabies), called a
process, task, or thread (of control). The state of the jprogs determined by the code, data, and
asingle program counter.

Concurrent Program: two or more processes that work together. Big differemadtiple program
counters.

To cooperate, the processes needmunication and synchronization, which can be achieved
throughshared variables, or message passing

Hardware to run concurrent programs can fall into severtaigmaies:

e single processor — logical concurrency (see Operatinge8ysburse)
e multiprocessor — shared memory

e network — distributed memory: slower communication

Computers may be classified as:

CS 324 Computer Architecture Fall 2009

e SISD: single instruction, single data — one processor domrgything at a time to one piece
of data at a time.

e SIMD: single instruction, multiple data — multiple process all doing the same thing at
the same time, but operating on different data. Also knowrvastor computers. Program
operates in “lock step” on each processor.

e MIMD: multiple instruction, multiple data — multiple prossors each doing their own thing.

e SPMD: single program, multiple data — not really a classifocaof the computer, but of a
model used to program a MIMD computer. Multiple processarsthe same program, but
do not operate in lock step. Also known as the “interactingrgemodel.

Some examples:

e SISD: Pre-"multi-core” desktops and laptops.

e SIMD: graphics cards that apply a single operation to anyasfadata points at the same
time.

Input Assembler { Setup ! Rstr/ ZCull
Vix Thread Issue Geom Thread Issue Pixel Thread Issue

i : — e ;
7 7 I 7 !)]

(] [| FEim [
[[
(I | [
(] i ||

|
¥

Thread Processor

NVIDIA image

e MIMD: desktops and laptops with multiprocessors or muttieechips — each processor can
be executing any instruction and operating on any data.

e MIMD: Cell architecture (Sony PS3) — one general purposegssor and several special-
purpose cores.

Cell Broadband Engine Processor

CS 324 Computer Architecture Fall 2009

http://ww. research.i bmconicell/cell _chip.htm

e MIMD: Symmetric Multiprocessing (SMP) systems — multipleopessor chips, sharing a
common memory (but likely with private cache). Sizes frono 2faybe 512 processors, but
usually limited to 8 or 16 processorts.

e MIMD: (defunct) MHC Cluster: several nodes, some have Ujpa$ Il processors, some
have Intel x86 processors. No shared memory between nodes!

e MIMD: ASCI Red, Sandia National Labs: 4600+ nodes, each witht@l/IPentium Il Xeon
processors, first TeraOp machine in 1997.

e MIMD: ASCI White, LLNL: 512 nodes, each with 16 Power3 NightHa® processors, 12
TeraOps total, was number 1 until 2002.

e Hybrid: Earth Simulator, Yokohama Institute for Earth Swies, Japan: 640-node NEC
system, each node with 8 vector processors, total of 5,120sCpeak performance of 40
TeraOps

e Hybrid: IBM Blue Gene systems — dense clusters of Cell processknese were #1 until
last month.

e Current leader: A MIMD Cray XT5-HE named Jaguar at ORNL. 224 &®essing cores,
totl of 2.3 petaflops of peak performance.
Seehtt p: //ww. t op500. org/ .

Moral: from the desktop to the world’s largest supercompytie's a world of parallel processing
out there!

Cache Coherency

Before we continue, we consider the fact that processorshi@e a common memory can intro-
duce problems when it comes to caches.

Any time a set of processors share a common memory but havetg@iaches at some point in
the memory hierarchy, the issue cdche coherency will arise. Once an issue only of concern
to high-end multiprocessors, it is now the concern of evemguter with a multi-core processor
chip.

Unlike the case of a single-processor memory hierarchy, lapmcessor with private caches at a
low level will allow a block of memory may reside in a line in me@othan one processor’s cache.
This is not a problem if neither processor modifies the memiduy consider this situation:

We have two processors, each with its own private L1 cache.prbgrams running on the CPUs
both access the same memory locationT he following sequence of actions occurs:

1. x is initialized to 0, and after some period of time, neitheche contains the block that
includesx

CS 324 Computer Architecture Fall 2009

2. CPU O readsg, andx’s block is brought into a line of CPU 0’s L1 cache
3. CPU 1reads, andx’s block is brought into a line of CPU 1's L1 cache
4. CPU 0 writex=1 into the location in its cache
5

. CPU 1 reads

What value ofx will be seen by CPU 1? It had better be 1, but it might not be wnilesre is a
mechanism to ensure that it is.

We want to maintaircoherency andconsistency with our caches.

A memory hierarchy is coherent if

1. Aread of a memory location by proces$dfollowing a write of that memory location by
processoP (with no intermediate writes) will return the value writtby P

2. Aread of a memory location by a procesBdollowing a write of that memory location by
another processd returns the value written by’ if some minimum amount of time has
passed between the write By and the read b

3. Writes areserialized — the values written over time by by any processors are seémtn
same order by all processors

The first two are pretty straightforward. The last ensuras @i processors see the most recently
written value by any processor.

How can we make this happen, while maintaining efficient eamperation (which is essential to
efficient processing)?

A cache coherence protocol must be implemented to ensure correctness.

A popular protocol is based amooping. All caches watch a shared memory access bus to deter-
mine whether local cache lines are also in the caches of GiR&ls.

A snooping protocol can be used to implemenirée invalidate protocol. Here, any time a CPU
writes to memory, it makes sure that it has the only copy ottuhe line that contains the memory
to be modified. It does this by writing an “invalidate” messam the shared bus, which will cause
all other caches to mark that cache line as invalid (if theyetecopy). Thus, if and when another
CPU attempts to access that cache line, it will get a cacheanigsvill fetch the (updated) block
from memory.

A cache coherence protocol that is correct, fast, and deakah key component of modern multi-
processor design, and would certainly be an important tiopgccourse focused on parallel archi-
tecture.

Multicore Architectures

CS 324 Computer Architecture Fall 2009

The recent approach involves replicating processing %ooa the same chip that traditionally
held a single processor.

This is themulticore or symmetric multithreaded (SMT) approach.

This has changed the nature of the increases in procespagittaes:

i
& CPU-Frequency 1993 - 2005

'r-"'.%'F'é’wars b AMD and Intel
guiide

4000

——Irtel

Figure used with permission from articlée Mother of All CPU Charts 2005/2006, Bert Topelt, Daniel
Schuhmann, Frank®kel, Tom’s Hardware Guide, Nov. 2005,
http://ww.tonmshardware. com 2005/ 11/ 21/t he_not her _of _al | _cpu_chart s_2005/

We will look briefly at the architecture — programming thesa inightmare for another day.

Intel/AMD Multicore

Intel and AMD have both introduced a series of chips thata@ionnultiple processing cores.

The Intel Core Duo:

CS 324 Computer Architecture Fall 2009

Intel® Smart Cache

Image from Intel Core Duo Processor product brief

Independent copies of ALU, registers, L1 cache

Processors on the same chip share L2 cache

This will require some cache coherency protocol

Up to the operating system to schedule processes/threadspoeach core occupied

Cell Broadband Engine

IBM, Sony, and Toshiba collaborated on @l architecture.

e The cell architecture consists of one or more PowerPC Psoc&dements (PPEs) that are
like traditional processors, and several Synergistic &sor Elements (SPESs) that are sim-
pler processors that only perform work as assigned to theRR#s.

Instructions and the data they manipulate are bound togetiae apulet.

A cell is a hierarchically structured “bundle of control and stn@ay processor resources”
or scalablgorocessing el ement.

Apulets can be arbitrarily assigned to cells.

More intense computation is performed by adding more celtee¢ pool.

10

CS 324 Computer Architecture Fall 2009

e Currently used in Playstation 3.

Cell Broadband Engine Processor

Die photo of a Cell processor

Graphics Processing Units
Computer graphics has driven the development of modern SB#igle instruction multiple data)
processors used as Graphics Processing Units.

e Graphics computations are often applied to a group of piaethe same time — hence the
SIMD approach — you can process many pixels at once (typid¢&8), but you have to do
exactly the same operation on each

e Typically restricted to the single-precision floating-piooperations needed for graphics.
e Focus on maximizing “frames per second”.
e Operations use graphics terminology: “pixel shaders” @rtex shaders”.

e But... these deliver hundreds of gigaflops of performanceatraditional CPUs are in the
tens at best.

11

CS 324 Computer Architecture Fall 2009

e People have noticed this performance and have harnessembthputational power for non-
graphics applications.

e GPU producers have noticed this interest and are now prayioetter programming capa-
bilities and double-precision operations (needed for rmesbus scientific calculations).

12

