
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2009

Topic Notes: Modern Architecture Theme: Parallelism

The increases in processing power for decades have come from, at least in part, faster and faster
clock speeds.

• we have seen in this course some of the reasons for limitations – gate delays

• smaller components means shorter gate delays, allowing shorter clock cycles and faster pro-
cessors

• as we approach the physical limitations of the sequential processor, performance gains are
coming more and more from the exploitation of parallelism

• there are many ways to expose native concurrency and introduce explicit parallelism to our
processors, and we’ll look at a few today

Instruction-Level Parallelism
We begin with the topics in P&H Section 4.10 –instruction-level parallelism (ILP).

The idea here is that we take a sequence of instructions that are intended to be executed one at a
time and in sequence and attempt to overlap their execution.We need to take care to ensure that
any parallelism we introduce will produce the same result asthe one at a time, sequential execution
of those instructions.

We have seen one very common method of exploiting parallelism with this approach – pipelining.

We saw how pipelining can improve the throughput of instructions for a processor, at the expense
of some additional hardware. We also saw how much care is required to ensure correctness in this
case, dealing with hazards through data forwarding and pipeline stalls.

One way to achieve this is to try to lengthen our pipelines, breaking down the slower stages into
multiple stages to allow each stage to be shorter and to allowmore instructions to be executing in
parallel in the pipeline.

Another common approach to instruction-level parallelisminvolves launching more than one in-
struction at each pipeline stage – a technique calledmultiple issue.

.

The goal here is to be able to issue (start/complete) more than one instruction per cycle. The range
in modern processors is 3-6 instructions issued per clock cycle.

Our text breaks down multiple issue into two main categories:

CS 324 Computer Architecture Fall 2009

1. static multiple issue – where the parallelism is determined, at least in part, statically by a
compiler

2. dynamic multiple issue – where parallelism is determined at run-time by the processor

In either case, instructions are organized intoissue slots, which are “starting positions” in prepara-
tion for entry into the pipeline.

Instructions need to be organized so that they can be executed in parallel with each other (and in
parallel with other instructions already in the pipeline),without interference.

We saw how important and potentially complex data and control hazards can be even in our 5-stage
single-issue pipeline – adding ILP provides more “opportunity” for hazards.

Dealing with the potential hazards is a collaborative effort between a compiler that would produce
code that avoids hazards and hardware that detects them and deals with them appropriately (using
the kinds of techniques we discussed earlier).

An important idea in achieveing an effective ILP is that ofspeculation. Here, we make some
guesses or assumptions about instructions, in hopes of keeping our multiple pipelines full. If we’re
lucky, at least some of the pipelines will be doing useful work.

Speculation might include:

• Execution of conditional branches – start executing both the “then” and “else” clauses.

• Parallel execution of code that may have data dependencies –start executing assuming things
are fine, go back and cancel if there’s a problem.

However, speculation can be incorrect so mechanisms must beincluded to deal with those cases
where problems arise.

Static Issue/Explicitly Parallel Instruction Computers

With static multiple issue, the burden to package instructions for execution in multiple pipelines is
placed on the compiler.

Static multiple issue has also been referred to as theexplicitly parallel instruction computer (EPIC)
or very long instruction word (VLIW) machine.

Examples of EPIC/VLIW architectures include Yale’s ELI and Intel’s Itanium.

bits

fnctl
unit

fnctl
unit

fnctl
unit

fnctl
unit

opcode opcode opcode opcode

Very Long Instruction Word (VLIW)

control

2

CS 324 Computer Architecture Fall 2009

• An issue packet of instructions, also called amolecule or a bundle, is made up of several
concurrently executed instructions, sometimes calledatoms.

• Each atom, which is like a single traditional instruction, is assigned to a separatefunctional
unit.

• The processor may have additional registers, where each atom gets its own copy of registers
that arecommitted only when the atom is retired (completed).

• Speculative execution: avoid conditional branch overhead—executethen and else, but
commit only one (Disadvantage: some work is guaranteed to bewasted).

}

fnctl
unit

fnctl
unit

fnctl
unit

fnctl
unit

C S1 S2

if (C) {
 S1;
 ...
}
else {
 S2;
 ...

• This required very complex programming – it’s meant to be done by compilers, not people.

We’ll consider a simple example, the one in P&H Figures 4.68 and 4.69 which show a two-issue
MIPS processor.

• Rule: each issue packet can contain at most one ALU/Branch instruction and one load/store
instruction.

• The compiler groups instructions when possible – insert anop into one of the pipelines
when no appropriate instruction is available to group with an instruction that needs to be
executed.

• The compiler may be held responsible for removing all hazards, allowing us to simplify the
hardware (remove or reduce the complexity of hazard detection).

• Even without additional forwarding and/or hazard detection, additional hardware is needed
to permit more values to be read/written to the register file on each cycle and to be able to
compute both ALU result or a branch target at the same time as an effective address for a
memory access.

Figure 4.70 shows how the following loop could be adapted to the two-issue setup:

3

CS 324 Computer Architecture Fall 2009

Loop: lw $t0, 0($s1) # temp = array elt
addu $t0, $t0, $s2 # add $s2 val to temp
sw $t0, 0($s1) # array elt = temp
addi $s1, $s1, -4 # advance to prev array elt
bne $s1, $zero, Loop # branch if s1!=0

In Figure 4.70, we see a very disappointing situation - thereis little opportunity to make use of our
two-issue system.

Figure 4.71 shows a much more effective translation of this loop to the two-issue system. Here, we
use the technique we discussed earlier, loop unrolling, to generate multiple copies of the code in
the loop, so each iteration of the generated code performs multiple passes of the original loop. This
gives much more opportunity for rescheduling the instructions to pair up ALU/branch instructions
with memory ops.

Dynamic Multiple Issue/Superscalar Processors

Moving away from the compiler and toward the hardware, we canconsider asuperscalar processor
that is capable of starting multiple “regular” instructions (not a compiler-generated issue packet)
on each clock cycle.

In its simplest form, the hardware will consider the next fewinstructions (in order) and quickly
determine how many may safely be executed in parallel (avoiding hazards), and will issue that
collection of instructions as a group.

Figure 4.72 shows an example ofdynamic pipeline scheduling where a three-stage pipeline is used
to collect groups of instructions to be executed (inreservation stations), execute them in parallel
and/or out of order, using multiple functional units (maybe10-12 at a time), and acommit unit that
writes back the results of the instructions in order.

Figure 4.73 shows some statistics about the parallelism in older and recent Intel and Sun proces-
sors.

Intel Pentium Parallel Extensions
You may have heard of the MMX (and AMD’s 3DNow!, and more recently SSE, SSE2, SSE3,
SSE4, and SSE5) extensions to the Intel Pentium core.

• SSE expands to “Streaming SIMD Extensions”, where SIMD = “Single Instruction Multiple
Data”

• These use a very simple idea to support arithmetic on short operands: cut the carry lines. By
using a 64-bit ALU but not passing along the carry from one group of 8 bits to the next, we
can manipulate 8 bytes independently but simultaneously ina single instruction.

• To make this work, packing and unpacking instructions are needed.

4

CS 324 Computer Architecture Fall 2009

• With these relatively simple and few changes to the ALU, a single instruction could process
two RGB+α pixels in a single operation:

rrrrrrrr gggggggg bbbbbbbb alphalph rrrrrrrr gggggggg bbbbbbbb alphalph

• Several modes are provided to allow the ALU to consider its input as 8 independent bytes or
4 independent 2-byte values or 2 independent 4-byte values.

• However, this makes programming more challenging: consider conditional pixel modifica-
tion.

Multiprocessors
For as long as there have been computers, they have not been powerful enough for some tasks.
Sure, one can wait for the next, faster processor to come along. But those with with very expensive
computations to be performed have turned to parallel processing for a very long time. And in recent
years, the limitations of current technology in terms of power consumption and heat dissipation
have forced parallelism to your personal computers.

We’ll say more about the chips you find in current PCs soon, but for now, we’ll consider the wider
range of parallel hardware. Programming these multiprocessors is also a significant and difficult
task, but for now we will put that issue aside and assume that we can extract some parallelism from
our programs – that is, the ability to send meaningful instructions to more than one processor at a
time to have them cooperate to solve a problem.

First, a bit of terminology:

Sequential Program: sequence of actions that produce a result (statements + variables), called a
process, task, or thread (of control). The state of the program is determined by the code, data, and
a single program counter.

Concurrent Program: two or more processes that work together. Big difference:multiple program
counters.

To cooperate, the processes needcommunication and synchronization, which can be achieved
throughshared variables, or message passing

Hardware to run concurrent programs can fall into several categories:

• single processor – logical concurrency (see Operating System course)

• multiprocessor – shared memory

• network – distributed memory: slower communication

Computers may be classified as:

5

CS 324 Computer Architecture Fall 2009

• SISD: single instruction, single data – one processor doingone thing at a time to one piece
of data at a time.

• SIMD: single instruction, multiple data – multiple processors all doing the same thing at
the same time, but operating on different data. Also known as: vector computers. Program
operates in “lock step” on each processor.

• MIMD: multiple instruction, multiple data – multiple processors each doing their own thing.

• SPMD: single program, multiple data – not really a classification of the computer, but of a
model used to program a MIMD computer. Multiple processors run the same program, but
do not operate in lock step. Also known as the “interacting peers” model.

Some examples:

• SISD: Pre-”multi-core” desktops and laptops.

• SIMD: graphics cards that apply a single operation to an array of data points at the same
time.

NVIDIA image

• MIMD: desktops and laptops with multiprocessors or multi-core chips – each processor can
be executing any instruction and operating on any data.

• MIMD: Cell architecture (Sony PS3) – one general purpose processor and several special-
purpose cores.

6

CS 324 Computer Architecture Fall 2009

http://www.research.ibm.com/cell/cell chip.html

• MIMD: Symmetric Multiprocessing (SMP) systems – multiple processor chips, sharing a
common memory (but likely with private cache). Sizes from 2 to maybe 512 processors, but
usually limited to 8 or 16 processorts.

• MIMD: (defunct) MHC Cluster: several nodes, some have UltraSparc II processors, some
have Intel x86 processors. No shared memory between nodes!

• MIMD: ASCI Red, Sandia National Labs: 4600+ nodes, each with 2 Intel Pentium II Xeon
processors, first TeraOp machine in 1997.

• MIMD: ASCI White, LLNL: 512 nodes, each with 16 Power3 Nighthawk-2 processors, 12
TeraOps total, was number 1 until 2002.

• Hybrid: Earth Simulator, Yokohama Institute for Earth Sciences, Japan: 640-node NEC
system, each node with 8 vector processors, total of 5,120 CPUs, peak performance of 40
TeraOps

• Hybrid: IBM Blue Gene systems – dense clusters of Cell processors. These were #1 until
last month.

• Current leader: A MIMD Cray XT5-HE named Jaguar at ORNL. 224,162processing cores,
totl of 2.3 petaflops of peak performance.

Seehttp://www.top500.org/.

Moral: from the desktop to the world’s largest supercomputers, it’s a world of parallel processing
out there!

Cache Coherency
Before we continue, we consider the fact that processors thatshare a common memory can intro-
duce problems when it comes to caches.

Any time a set of processors share a common memory but have private caches at some point in
the memory hierarchy, the issue ofcache coherency will arise. Once an issue only of concern
to high-end multiprocessors, it is now the concern of every computer with a multi-core processor
chip.

Unlike the case of a single-processor memory hierarchy, a multiprocessor with private caches at a
low level will allow a block of memory may reside in a line in more than one processor’s cache.
This is not a problem if neither processor modifies the memory. But consider this situation:

We have two processors, each with its own private L1 cache. The programs running on the CPUs
both access the same memory location,x. The following sequence of actions occurs:

1. x is initialized to 0, and after some period of time, neither cache contains the block that
includesx

7

CS 324 Computer Architecture Fall 2009

2. CPU 0 readsx, andx’s block is brought into a line of CPU 0’s L1 cache

3. CPU 1 readsx, andx’s block is brought into a line of CPU 1’s L1 cache

4. CPU 0 writesx=1 into the location in its cache

5. CPU 1 readsx

What value ofx will be seen by CPU 1? It had better be 1, but it might not be unless there is a
mechanism to ensure that it is.

We want to maintaincoherency andconsistency with our caches.

A memory hierarchy is coherent if

1. A read of a memory location by processorP following a write of that memory location by
processorP (with no intermediate writes) will return the value writtenby P

2. A read of a memory location by a processorP following a write of that memory location by
another processorP’ returns the value written byP’ if some minimum amount of time has
passed between the write byP’ and the read byP

3. Writes areserialized – the values written over time by by any processors are seen inthat
same order by all processors

The first two are pretty straightforward. The last ensures that all processors see the most recently
written value by any processor.

How can we make this happen, while maintaining efficient cache operation (which is essential to
efficient processing)?

A cache coherence protocol must be implemented to ensure correctness.

A popular protocol is based onsnooping. All caches watch a shared memory access bus to deter-
mine whether local cache lines are also in the caches of otherCPUs.

A snooping protocol can be used to implement awrite invalidate protocol. Here, any time a CPU
writes to memory, it makes sure that it has the only copy of thecache line that contains the memory
to be modified. It does this by writing an “invalidate” message on the shared bus, which will cause
all other caches to mark that cache line as invalid (if they have a copy). Thus, if and when another
CPU attempts to access that cache line, it will get a cache missand will fetch the (updated) block
from memory.

A cache coherence protocol that is correct, fast, and scalable is a key component of modern multi-
processor design, and would certainly be an important topicin a course focused on parallel archi-
tecture.

Multicore Architectures

8

CS 324 Computer Architecture Fall 2009

The recent approach involves replicating processing “cores” on the same chip that traditionally
held a single processor.

This is themulticore or symmetric multithreaded (SMT) approach.

This has changed the nature of the increases in processing capabilities:

Figure used with permission from articleThe Mother of All CPU Charts 2005/2006, Bert Töpelt, Daniel
Schuhmann, Frank V̈olkel, Tom’s Hardware Guide, Nov. 2005,

http://www.tomshardware.com/2005/11/21/the mother of all cpu charts 2005/

We will look briefly at the architecture – programming these is a nightmare for another day.

Intel/AMD Multicore

Intel and AMD have both introduced a series of chips that contain multiple processing cores.

The Intel Core Duo:

9

CS 324 Computer Architecture Fall 2009

Image from Intel Core Duo Processor product brief

• Independent copies of ALU, registers, L1 cache

• Processors on the same chip share L2 cache

• This will require some cache coherency protocol

• Up to the operating system to schedule processes/threads tokeep each core occupied

Cell Broadband Engine

IBM, Sony, and Toshiba collaborated on theCell architecture.

• The cell architecture consists of one or more PowerPC Processor Elements (PPEs) that are
like traditional processors, and several Synergistic Processor Elements (SPEs) that are sim-
pler processors that only perform work as assigned to them byPPEs.

• Instructions and the data they manipulate are bound together in anapulet.

• A cell is a hierarchically structured “bundle of control and streaming processor resources”
or scalableprocessing element.

• Apulets can be arbitrarily assigned to cells.

• More intense computation is performed by adding more cells to the pool.

10

CS 324 Computer Architecture Fall 2009

• Currently used in Playstation 3.

Die photo of a Cell processor

Graphics Processing Units
Computer graphics has driven the development of modern SIMD (single instruction multiple data)
processors used as Graphics Processing Units.

• Graphics computations are often applied to a group of pixelsat the same time – hence the
SIMD approach – you can process many pixels at once (typically 128), but you have to do
exactly the same operation on each

• Typically restricted to the single-precision floating-point operations needed for graphics.

• Focus on maximizing “frames per second”.

• Operations use graphics terminology: “pixel shaders” or “vertex shaders”.

• But... these deliver hundreds of gigaflops of performance where traditional CPUs are in the
tens at best.

11

CS 324 Computer Architecture Fall 2009

• People have noticed this performance and have harnessed this computational power for non-
graphics applications.

• GPU producers have noticed this interest and are now providing better programming capa-
bilities and double-precision operations (needed for mostserious scientific calculations).

12

