Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: MIPS Programming

We spent some time looking at the MIPS Instruction Set Aseddtitre. We will now consider how
to program in MIPS assembly language.

Our arsenal of MIPS assembly instructions now include:

e add $a, $b, $c
e sub $a, $b, $c
e addi $a, $b, n
e lw $a, n($b)

e sw $a, n($hb)
esll $a, $b, n
esrl $a, $b, n
e and $a, $b, $c
e andi $a, $b, n
e Or $a, $b, $c
eori %a, $b, n
e nor $a, $b, $c
e beq $a, $b, L
e bne $a, $b, L
oj L

Control Structures in MIPS Assembly

Suppose we want to implemendki | e loop in MIPS assembly. Consider the high-level language
code:

whi | e (a! =b)
a += i;

CS 324 Computer Architecture Fall 2009

wherea is stored in registe$s0, b in $s1 and the increment is in $s2.

Our MIPS assembly code might look like this:

Loop: beq $s0, $s1, EndLoop # if a==b goto EndLoop
add $s0, $sO0, $s2 # a = a + i
] Loop # goto Loop

EndLoop:

code after loop ...
Note that we use bBeq instruction here as we want to branch in the case where wengetavish
to execute the contents of the loop.
Now consider a slightly more complicated loop:

while (a[i] == k)

I+=],
We need to deal with an array access here. Suppose we havetmedd#owing register assign-
ments:
The start of arrap isin$s3,i isin$s0, k isin$s1, andj isin$s2. All arei nt values.

One way to implement this code would be:

LoopTop: sl $t0, $s0, 2 #10 =i * 4
add $t0, $t0, $s3 # t0 = address of afi]
I w $t1, 0($t0) # t1l = contents of afi]
bne $t1, $s1, EndLoop # if a[i] !'= k, goto EndLoop
add $s0, $s0, $s2 # i =i + |
] LoopTop # junp back to the top of the | oop
EndLoop:

code after loop ...
A few notes:

e We need to multiply by 4 to get the correct offset, since we'’re assumang an array of
word-sized values.

¢ We might be tempted to write
| w $t1, $t0($s3)

to access the value at an offset®ifO from our base registe$s3. But that is not valid
MIPS - the offset part of théw andsw instructions needs to be a constant, not a register.
The MIPS designers could have provided such an instructievo(ld be R-format instead

of I-format), but they chose not to.

CS 324 Computer Architecture Fall 2009

Before we can complete our next example, we need a couple dfaadd instructions — reading
and writing single bytes from memory.

These instructions,b for load byte and b for store byte, work just like thewandswinstructions
except that only single-byte values are processed.

I b $a, n($hb)

Loads the single byte at an offset mfirom register$b and stores itsign-extended, into register
$a.

sb $a, n($h)

Stores the byte in the bottom 8 bits of regiskarinto memory at an offset af from registei$b.

String Processing Examples

Armed with these instructions, we can write our next examplestring copy function like C's
strcpy:

strcpy(dest, src);

Recall that C strings are terminated with a null (0) character

For now, we’'ll just look at the main loop of this function. Asae registess1 holds the address
of the start of thelest string and tha$s?2 holds the address of the start of thec string.

Our task is to write a loop that copies characters (bytesh fitee source string to the destination
string.

LoopTop: Ib $t0, 0(%$s2) # tenp reg = char at $s2
sh $t0, 0O(%$sl) # char at $sl1l gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increnent $sl
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

For another example:

char a[11];

: put sonething in a ...

for (i=0; 1<10; i++) {
a[i+1] = ali];

}

CS 324

Computer Architecture Fall 2009

Assuming$s0 contains the address af here’s one way to write this:

add
For Loop: sl ti
beq
add
I b
addi
sb
addi
j
LoopEnd:

$s0, $zero, $zero

$t1, $s0, 10

#

1=0
i <10 ?

$t1, $zero, LoopEnd # if done, branch out

$t2, $s0, $s1

$t3, 0($t2)
$t2, $t2, 1
$t3, O($t2)
$s0, $sO, 1
For Loop

#

#
#
#
#
#

t2 gets address of a[i]

t3 gets ali]

t2 gets address of afi +1]
a[i+1] gets t3

| ++

back to check | oop condition

MIPS Subroutines and Programs

You are all familiar with function/method calls in high-EeManguages. In assembly language, we

usually refer to these asibroutines.

The idea is the same as a function or method call — the progranches from its sequence of

instructions to execute a chunk of code elsewhere, themsta continue where it left off.

We’ll now look at how to write and call subroutines in MIPS asgoly.

Special Registers and Instructions

Recall that there were several registers reserved to hefsiugubroutine calls:

e $a0-$a4: argumentregisters —a place for the caller to place vatugsrid to the subroutine.

e $v0, $v1: return value registers — a place for subroutines to retalmes to the caller.

e $ra: return address register — where to resume executing thex edlen the subroutine is

finished.

We also have a couple of special jump instructions:

e Jump and Link:

j al address

This instruction puts the address of the next instructid®{#® into registefr a, then jumps

to the address.

This is a J-format instruction, just like the standard jumgtiuction |).

4

CS 324 Computer Architecture Fall 2009

e Jump to Register:
jr %$a

Jumps to the address specified in the given register.
This is an R-format instruction.

Assuming the subroutine hasn’t changed $ne register, this can be used to return from
the subroutine.

Registers and the Stack

We said previously that the “s” registe$s 0-$s7 are the ones assigned to variables and the “t”
registersbt 0-$t 7 are temporary values.

This becomes important when we start looking at subroutiflee accepted convention for register
use by subroutines:

e $t 0-$t 7 are always available for use by a subroutine

— if a subroutine calls another subroutine, it must assumitieacalled subroutine will
modify $t 0-$t 7.

— if this is a problem for the calling subroutine, it should sany values it has ifit O-
$t 7 to memory and restore them after the subroutine call.

e $s0-$s7 should be unchanged by a subroutine call

— if a subroutine calls another subroutine, it can expectataas in$s0-$s7 to remain
upon return.

— if the called subroutine wishes to make use$sf0-$s7, it should save the caller’s
values in any of these registers it will use in memory, thestare them before return.

Since subroutines can be called by anyone, we don’t knowtwisicregisters, if any, are important
to the caller. So we have to save these if we use them.

So where do we save values in memory when we need to save thentfe€ack.

The stack is a section of memory dedicated to saving regitananage subroutine calls.
We have a special regist®sp called thestack pointer that indicates théop of the stack.

The stack grows and shrinks as registers are saved andegsliaring a program’s execution.

If we have a subroutine that will need to make usebeD, $s1 and $s2, we need to do the
following at the start of the subroutine’s code:

CS 324 Computer Architecture Fall 2009

addi $sp, $sp, -12 # make roomfor 3 4-byte val ues
SW $s0, O(S$sp) # push sO

sw $s1, 4($sp) # push sl

SW $s2, 8(%sp) # push s2

Then before returning:

[w $s2, 8($sp) # pop s2

| w $sl, 4(%sp) # pop sl

| w $s0, O(S$sp) # pop sO

addi sp, Ssp, 12 # restore the stack pointer

Note that we “pop” in the opposite order as we “push”.

A First Complete Subroutine

Let’s return to our string copy code:

LoopTop: Ib $t0, 0(%$s2) # tenp reg = char at $s2
sh $t0, O(%$sl) # char at $sl1l gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $si1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

In order to make this a subroutine, we need to get values fhansaibroutine argument registers
and save and restore values of any “s” registers we decidesto@ur code becomes:

strcpy: addi $sp, Psp, -8 # make space for 2 words on the stack
SW $s2, 4($sp) # save s2
sSwW $s1, O(S$sp) # save sl
add $s1l, $a0, $zero # copy arg0 into sl
add $s2, $al, $zero # copy argl into s2
LoopTop: |Ib $t0, 0($s2) # tenp reg = char at $s2
sh $t0, O(%$sl) # char at $sl1l gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $sl
bne $t0, $zero, LoopTop # branch if we didn't just copy a nul
| w $s1, O(S$sp) # restore sl
| w $s2, 4(S%sp) # restore s2
addi $sp, $sp, 8 # restore sp
jr $ra # return from subroute

CS 324 Computer Architecture Fall 2009

Note that we could so something simpler here: save and ety and$al and use those in
place of$s1 and$s2 throughout.

A Recursive Example

We will develop a MIPS assembly subroutine to implement glieding C function:

int factorial (int x) {
if (x<1l) return 1;
return x » factorial (x-1);

Since this subroutine calls another subroutine (itselfheed to savér a and any temp registers
we care about before making the recursive call.

We will assume a subroutimaul t i pl y exists and we will use that to do our multiplication to get
extra practice with subroutines.

Here is some code for this:

factorial :
make space for 2 words on the stack
addi $sp, $sp, -8

save $ra and $a0 on the stack
SW $a0, 4(%$sp)
SW $ra, 0O(S%sp)

slti $t0, $a0, 1 #is x < 1?
beq $t0, $zero, L1 # if no, skip over if part

x >= 1, just return 1
addi $v0, $zero, 1 # return value is 1

we could restore $a0 and $ra but we know t hey haven’t
changed when we take this quick exit, so let’s not

but we still need to put $sp back the way we found it
addi $sp, $sp, 8
jr $ra # return to caller

here, x>=1 so we need to nake a recursive call
L1: addi $a0, $a0, -1 # get x-1 for the paraneter
j al factori al # recursive call, will put answer in $vO

W now want to set up for the multiply, but we destroyed $a0
above, but have it on the stack, so let's load it

7

CS 324 Computer Architecture Fall 2009

| w $a0, 4(%sp)
add $al, $v0, $zero # put factorial (x-1) result into $al
jal mul tiply # multiply $a0+$al, put result in $vO

$v0 i s where we want our answer, so no work there
but nmultiply could have changed $a0 and di d change $ra

| w $ra, 0O(S%sp) # restore $ra
[w $a0, 4($sp) # restore $a0
addi $sp, $sp, 8 # restore $sp
jr $ra # return to caller

Trace through this with the cdilact ori al (3) .

Complete Programs and SPIM

We will use a simulator called SPIM to execute MIPS programs.

e SPIM reads MIPS assembly language programs

SPIM simulates the execution of each instruction

SPIM displays values of registers and memory

SPIM allows breakpoints and step-by-step execution

SPIM provides primitive 1/O to allow interactive processgin

Three SPIM versions are available:

e spi m—the command-line version
e Xspi m—the X11 version (Macs, Unix workstations)

e PCspi m—Windows version

A complete program consists of several parts, includingMieS assembly code we have been
considering in our previous examples.

Our first complete example will show a few of the parts of a Mg?&gram beyond what we have
seen.

See Example:
/[honme/jteresco/ shared/ cs324/ exanpl es/ spi msinple/sinple.s

Things to notice about this example:

CS 324 Computer Architecture Fall 2009

e Comments in MIPS assembly are any part of a line aftéicharacter.
e We can define variables in thalat a portion of the program.

e Here, we define three word-sized variables with initial ealuThe names are the labels, the
initial values are given after theanor d directive. These labels alecal |abels, meaning that
they exist only within this assembly source file.

¢ We also define an uninitialized word-sized variable with.ts@ace directive and 4 for the
number of bytes of space to allocate.

e The program is defined in the ext portion — the “code section”.

e We include. al i gn 2 to make sure our code starts on a word boundary. (Note that
. al i gn n forces the next defined item to align o’abyte boundary.)

e . gl obl mai n makes therai n label anexternal, or global label, which allows themai n
subroutine to be callable from outside of this file (in thisegby the simulator).

e The program itself is defined starting at timei n: label.

¢ Note that we can udewandswto load registers from and store registers to named memory
locations.

e Our first example of SPIM’s primitive I/O is thisyscal | . syscal | can perform one
of several functions, as determined by the valugw®. Here, we have a 1 ifiv0, which
specifiegri nt _i nt. The int to print must be placed $a0.

¢ Finally, whenmai n completes, we return from the subroutine with $r a.
To run this at the command line:
spimsinple.s

This should print our answer.
We can learn much more about the execution of the programmgi8PIM in interactive mode.

Run SPIM without any command-line parameters to gef(thpi n) prompt, and typdiel p to
see the options available.

Some things to notice when stepping through our program:

e Execution starts at 0x00400000 by default, which is the ¢bdesets up the call twai n.
o After a few stepspai n gets invoked with g al call.

e When we get tarai n, we find that we are executinglaui instruction rather than the
expected w. Why?

CS 324 Computer Architecture Fall 2009

— Thel winstruction requires a base register and offset:
| w $t 0, of fset($base)

— The assembler allows us to writav $t 0, nuni (which constitues a different ad-
dressing mode) and inserts appropriate instructions timgera load from a labelled
memory location.

— It computes the appropriate address, loads it into thevederssembler registéat ,
then issues Awinstruction in the machine’s memory addressing mode.

Another simple example:

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ spi msi npl e/ hell o. c

A few things to note:

¢ We can define a string constant as part of our data segmenamitasci i z directive.

e Thel a is a pseudoinstruction that directs the assembler to loagjitren register with the
address of the given label.

e A syscal |l with $v0 set to 4 is thepri nt st ri ng operation, and will print the null-
terminated string starting at the addres$&0.

Next, we look at a complete version of the factorial program.

See Example:
/ home/ j t eresco/ shar ed/ cs324/ exanpl es/ spimfactorial/factorial.s
e Thef act ori al subroutine is identical to what we looked at last time.

e We fill in the missingnul ti pl y routine with the one you did for the lecture assignment,
changed to us$a0 and$al as the parameters and to put the answer$wo.

e Thenai n subroutine will use two “s” registers and will call subroés, so we begin by
pushing$s0, $s1, and$r a onto the stack. Note that SPIM initializé&s p for us appro-
priately.

e We print a prompt string with thpri nt _stri ng syscal | and then read in an int from
the keyboard with theead_i nt syscal | . Note: a complete list afyscal | codesisin
Figure B.9.1.

e After the call tof act ori al , we use a series afyscal | s to print the answer.

e Finally, we pop the stack and return frami n.

10

CS 324 Computer Architecture Fall 2009

MIPS Pseudoinstructions

We have mentioned the idea jgeudoinstructions a few times. These are “instructions” that exist
in MIPS assembly that don’t exist in machine language.
e The pseudoinstructions map to one or more MIPS machineauctgins.

e These exist for convenience of the programmer (human or gerjp
Here are a few common MIPS pseudoinstructions:

e nove $a $b — move (copy) contents of regist®b to register$a.
This is assembled intadd $s0, $sl1, $zero.

e blt $a, $b, L —branchonlessthan—if $a is less thar$b, branch to label.
This is assembled into two machine instructions:

slt $at, %a, $b
bne $at, L

Note the use of the assembler reserved regier.
e | i —load immediate
e | a —load address
e sgt,sle,sge —seton ...

e bge, bgt, bl e, bl t — conditional branches

11

