
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2009

Topic Notes: MIPS Programming

We spent some time looking at the MIPS Instruction Set Architecture. We will now consider how
to program in MIPS assembly language.

Our arsenal of MIPS assembly instructions now include:

• add $a, $b, $c

• sub $a, $b, $c

• addi $a, $b, n

• lw $a, n($b)

• sw $a, n($b)

• sll $a, $b, n

• srl $a, $b, n

• and $a, $b, $c

• andi $a, $b, n

• or $a, $b, $c

• ori $a, $b, n

• nor $a, $b, $c

• beq $a, $b, L

• bne $a, $b, L

• j L

Control Structures in MIPS Assembly
Suppose we want to implement awhile loop in MIPS assembly. Consider the high-level language
code:

while (a!=b)
a += i;

CS 324 Computer Architecture Fall 2009

wherea is stored in register$s0, b in $s1 and the incrementi is in $s2.

Our MIPS assembly code might look like this:

Loop: beq $s0, $s1, EndLoop # if a==b goto EndLoop
add $s0, $s0, $s2 # a = a + i
j Loop # goto Loop

EndLoop:
... code after loop ...

Note that we use abeq instruction here as we want to branch in the case where we no longer wish
to execute the contents of the loop.

Now consider a slightly more complicated loop:

while (a[i] == k)
i += j;

We need to deal with an array access here. Suppose we have madethe following register assign-
ments:

The start of arraya is in $s3, i is in $s0, k is in $s1, andj is in $s2. All areint values.

One way to implement this code would be:

LoopTop: sll $t0, $s0, 2 # t0 = i * 4
add $t0, $t0, $s3 # t0 = address of a[i]
lw $t1, 0($t0) # t1 = contents of a[i]
bne $t1, $s1, EndLoop # if a[i] != k, goto EndLoop
add $s0, $s0, $s2 # i = i + j
j LoopTop # jump back to the top of the loop

EndLoop:
... code after loop ...

A few notes:

• We need to multiplyi by 4 to get the correct offset, since we’re assuminga is an array of
word-sized values.

• We might be tempted to write

lw $t1, $t0($s3)

to access the value at an offset of$t0 from our base register$s3. But that is not valid
MIPS - the offset part of thelw andsw instructions needs to be a constant, not a register.
The MIPS designers could have provided such an instruction (it would be R-format instead
of I-format), but they chose not to.

2

CS 324 Computer Architecture Fall 2009

Before we can complete our next example, we need a couple of additional instructions – reading
and writing single bytes from memory.

These instructions,lb for load byte andsb for store byte, work just like thelw andsw instructions
except that only single-byte values are processed.

lb $a, n($b)

Loads the single byte at an offset ofn from register$b and stores it,sign-extended, into register
$a.

sb $a, n($b)

Stores the byte in the bottom 8 bits of register$a into memory at an offset ofn from register$b.

String Processing Examples

Armed with these instructions, we can write our next example: a string copy function like C’s
strcpy:

strcpy(dest, src);

Recall that C strings are terminated with a null (0) character.

For now, we’ll just look at the main loop of this function. Assume register$s1 holds the address
of the start of thedest string and that$s2 holds the address of the start of thesrc string.

Our task is to write a loop that copies characters (bytes) from the source string to the destination
string.

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

For another example:

char a[11];
... put something in a ...
for (i=0; i<10; i++) {

a[i+1] = a[i];
}

3

CS 324 Computer Architecture Fall 2009

Assuming$s0 contains the address ofa, here’s one way to write this:

add $s0, $zero, $zero # i=0
ForLoop: slti $t1, $s0, 10 # i<10 ?

beq $t1, $zero, LoopEnd # if done, branch out
add $t2, $s0, $s1 # t2 gets address of a[i]
lb $t3, 0($t2) # t3 gets a[i]
addi $t2, $t2, 1 # t2 gets address of a[i+1]
sb $t3, 0($t2) # a[i+1] gets t3
addi $s0, $s0, 1 # i++
j ForLoop # back to check loop condition

LoopEnd:

MIPS Subroutines and Programs
You are all familiar with function/method calls in high-level languages. In assembly language, we
usually refer to these assubroutines.

The idea is the same as a function or method call – the program branches from its sequence of
instructions to execute a chunk of code elsewhere, then returns to continue where it left off.

We’ll now look at how to write and call subroutines in MIPS assembly.

Special Registers and Instructions

Recall that there were several registers reserved to help support subroutine calls:

• $a0-$a4: argument registers – a place for the caller to place values to send to the subroutine.

• $v0, $v1: return value registers – a place for subroutines to return values to the caller.

• $ra: return address register – where to resume executing the caller when the subroutine is
finished.

We also have a couple of special jump instructions:

• Jump and Link:

jal address

This instruction puts the address of the next instruction (PC+4) into register$ra, then jumps
to the address.

This is a J-format instruction, just like the standard jump instruction (j).

4

CS 324 Computer Architecture Fall 2009

• Jump to Register:

jr $a

Jumps to the address specified in the given register.

This is an R-format instruction.

Assuming the subroutine hasn’t changed the$ra register, this can be used to return from
the subroutine.

Registers and the Stack

We said previously that the “s” registers$s0-$s7 are the ones assigned to variables and the “t”
registers$t0-$t7 are temporary values.

This becomes important when we start looking at subroutines. The accepted convention for register
use by subroutines:

• $t0-$t7 are always available for use by a subroutine

– if a subroutine calls another subroutine, it must assume that the called subroutine will
modify $t0-$t7.

– if this is a problem for the calling subroutine, it should save any values it has in$t0-
$t7 to memory and restore them after the subroutine call.

• $s0-$s7 should be unchanged by a subroutine call

– if a subroutine calls another subroutine, it can expect its values in$s0-$s7 to remain
upon return.

– if the called subroutine wishes to make use of$s0-$s7, it should save the caller’s
values in any of these registers it will use in memory, then restore them before return.

Since subroutines can be called by anyone, we don’t know which “s” registers, if any, are important
to the caller. So we have to save these if we use them.

So where do we save values in memory when we need to save them? On thestack.

The stack is a section of memory dedicated to saving registers to manage subroutine calls.

We have a special register$sp called thestack pointer that indicates thetop of the stack.

The stack grows and shrinks as registers are saved and restored during a program’s execution.

If we have a subroutine that will need to make use of$s0, $s1 and$s2, we need to do the
following at the start of the subroutine’s code:

5

CS 324 Computer Architecture Fall 2009

addi $sp, $sp, -12 # make room for 3 4-byte values
sw $s0, 0($sp) # push s0
sw $s1, 4($sp) # push s1
sw $s2, 8($sp) # push s2

Then before returning:

lw $s2, 8($sp) # pop s2
lw $s1, 4($sp) # pop s1
lw $s0, 0($sp) # pop s0
addi $sp, $sp, 12 # restore the stack pointer

Note that we “pop” in the opposite order as we “push”.

A First Complete Subroutine

Let’s return to our string copy code:

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

In order to make this a subroutine, we need to get values from the subroutine argument registers
and save and restore values of any “s” registers we decide to use. Our code becomes:

strcpy: addi $sp, $sp, -8 # make space for 2 words on the stack
sw $s2, 4($sp) # save s2
sw $s1, 0($sp) # save s1
add $s1, $a0, $zero # copy arg0 into s1
add $s2, $a1, $zero # copy arg1 into s2

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

lw $s1, 0($sp) # restore s1
lw $s2, 4($sp) # restore s2
addi $sp, $sp, 8 # restore sp
jr $ra # return from subroute

6

CS 324 Computer Architecture Fall 2009

Note that we could so something simpler here: save and restore $a0 and$a1 and use those in
place of$s1 and$s2 throughout.

A Recursive Example

We will develop a MIPS assembly subroutine to implement the following C function:

int factorial (int x) {
if (x<1) return 1;
return x * factorial(x-1);

Since this subroutine calls another subroutine (itself) weneed to save$ra and any temp registers
we care about before making the recursive call.

We will assume a subroutinemultiply exists and we will use that to do our multiplication to get
extra practice with subroutines.

Here is some code for this:

factorial:
make space for 2 words on the stack
addi $sp, $sp, -8

save $ra and $a0 on the stack
sw $a0, 4($sp)
sw $ra, 0($sp)

slti $t0, $a0, 1 # is x < 1?
beq $t0, $zero, L1 # if no, skip over if part

x >= 1, just return 1
addi $v0, $zero, 1 # return value is 1

we could restore $a0 and $ra but we know they haven’t
changed when we take this quick exit, so let’s not
but we still need to put $sp back the way we found it
addi $sp, $sp, 8
jr $ra # return to caller

here, x>=1 so we need to make a recursive call
L1: addi $a0, $a0, -1 # get x-1 for the parameter

jal factorial # recursive call, will put answer in $v0

We now want to set up for the multiply, but we destroyed $a0
above, but have it on the stack, so let’s load it

7

CS 324 Computer Architecture Fall 2009

lw $a0, 4($sp)
add $a1, $v0, $zero # put factorial(x-1) result into $a1
jal multiply # multiply $a0*$a1, put result in $v0

$v0 is where we want our answer, so no work there
but multiply could have changed $a0 and did change $ra
lw $ra, 0($sp) # restore $ra
lw $a0, 4($sp) # restore $a0
addi $sp, $sp, 8 # restore $sp
jr $ra # return to caller

Trace through this with the callfactorial(3).

Complete Programs and SPIM
We will use a simulator called SPIM to execute MIPS programs.

• SPIM reads MIPS assembly language programs

• SPIM simulates the execution of each instruction

• SPIM displays values of registers and memory

• SPIM allows breakpoints and step-by-step execution

• SPIM provides primitive I/O to allow interactive processing

Three SPIM versions are available:

• spim – the command-line version

• xspim – the X11 version (Macs, Unix workstations)

• PCspim – Windows version

A complete program consists of several parts, including theMIPS assembly code we have been
considering in our previous examples.

Our first complete example will show a few of the parts of a MIPSprogram beyond what we have
seen.

See Example:
/home/jteresco/shared/cs324/examples/spim-simple/simple.s

Things to notice about this example:

8

CS 324 Computer Architecture Fall 2009

• Comments in MIPS assembly are any part of a line after a# character.

• We can define variables in the.data portion of the program.

• Here, we define three word-sized variables with initial values. The names are the labels, the
initial values are given after the.word directive. These labels arelocal labels, meaning that
they exist only within this assembly source file.

• We also define an uninitialized word-sized variable with the.space directive and 4 for the
number of bytes of space to allocate.

• The program is defined in the.text portion – the “code section”.

• We include.align 2 to make sure our code starts on a word boundary. (Note that
.align n forces the next defined item to align on a2

n-byte boundary.)

• .globl main makes themain label anexternal, or global label, which allows themain
subroutine to be callable from outside of this file (in this case, by the simulator).

• The program itself is defined starting at themain: label.

• Note that we can uselw andsw to load registers from and store registers to named memory
locations.

• Our first example of SPIM’s primitive I/O is thissyscall. syscall can perform one
of several functions, as determined by the value in$v0. Here, we have a 1 in$v0, which
specifiesprint int. The int to print must be placed in$a0.

• Finally, whenmain completes, we return from the subroutine withjr $ra.

To run this at the command line:

spim simple.s

This should print our answer.

We can learn much more about the execution of the program running SPIM in interactive mode.

Run SPIM without any command-line parameters to get the(spim) prompt, and typehelp to
see the options available.

Some things to notice when stepping through our program:

• Execution starts at 0x00400000 by default, which is the codethat sets up the call tomain.

• After a few steps,main gets invoked with ajal call.

• When we get tomain, we find that we are executing alui instruction rather than the
expectedlw. Why?

9

CS 324 Computer Architecture Fall 2009

– Thelw instruction requires a base register and offset:

lw $t0, offset($base)

– The assembler allows us to writelw $t0, num1 (which constitues a different ad-
dressing mode) and inserts appropriate instructions to perform a load from a labelled
memory location.

– It computes the appropriate address, loads it into the reserved assembler register$at,
then issues alw instruction in the machine’s memory addressing mode.

Another simple example:

See Example:
/home/jteresco/shared/cs324/examples/spim-simple/hello.c

A few things to note:

• We can define a string constant as part of our data segment withan.asciiz directive.

• Thela is a pseudoinstruction that directs the assembler to load the given register with the
address of the given label.

• A syscall with $v0 set to 4 is theprint string operation, and will print the null-
terminated string starting at the address in$a0.

Next, we look at a complete version of the factorial program.

See Example:
/home/jteresco/shared/cs324/examples/spim-factorial/factorial.s

• Thefactorial subroutine is identical to what we looked at last time.

• We fill in the missingmultiply routine with the one you did for the lecture assignment,
changed to use$a0 and$a1 as the parameters and to put the answer into$v0.

• Themain subroutine will use two “s” registers and will call subroutines, so we begin by
pushing$s0, $s1, and$ra onto the stack. Note that SPIM initialized$sp for us appro-
priately.

• We print a prompt string with theprint string syscall and then read in an int from
the keyboard with theread int syscall. Note: a complete list ofsyscall codes is in
Figure B.9.1.

• After the call tofactorial, we use a series ofsyscalls to print the answer.

• Finally, we pop the stack and return frommain.

10

CS 324 Computer Architecture Fall 2009

MIPS Pseudoinstructions
We have mentioned the idea ofpseudoinstructions a few times. These are “instructions” that exist
in MIPS assembly that don’t exist in machine language.

• The pseudoinstructions map to one or more MIPS machine instructions.

• These exist for convenience of the programmer (human or compiler).

Here are a few common MIPS pseudoinstructions:

• move $a $b – move (copy) contents of register$b to register$a.

This is assembled intoadd $s0, $s1, $zero.

• blt $a, $b, L – branch on less than – if $a is less than$b, branch to labelL.

This is assembled into two machine instructions:

slt $at, $a, $b
bne $at, L

Note the use of the assembler reserved register$at.

• li – load immediate

• la – load address

• sgt, sle, sge – set on ...

• bge, bgt, ble, blt – conditional branches

11

